메뉴 건너뛰기




Volumn 11, Issue 4, 2017, Pages

Semantic labeling of high-resolution aerial images using an ensemble of fully convolutional networks

Author keywords

aerial images; convolutional neural network; ensemble learning; fully convolutional network; semantic labeling

Indexed keywords

ANTENNAS; ASPECT RATIO; CLASSIFICATION (OF INFORMATION); CONVOLUTION; IMAGE SEGMENTATION; NEURAL NETWORKS; REMOTE SENSING; SEMANTIC WEB; SEMANTICS;

EID: 85034968011     PISSN: None     EISSN: 19313195     Source Type: Journal    
DOI: 10.1117/1.JRS.11.042617     Document Type: Article
Times cited : (15)

References (42)
  • 1
    • 84994217941 scopus 로고    scopus 로고
    • Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
    • IGRSD2 0196-2892
    • M. Volpi and D. Tuia, " Dense semantic labeling of subdecimeter resolution images with convolutional neural networks.," IEEE Trans. Geosci. Remote Sens. 55 (2), 881-893 (2017). IGRSD2 0196-2892 http://dx.doi.org/10.1109/TGRS.2016.2616585
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.2 , pp. 881-893
    • Volpi, M.1    Tuia, D.2
  • 4
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • IEEPAD 0018-9219
    • Y. Lecun et al., " Gradient-based learning applied to document recognition.," Proc. IEEE 86 (11), 2278-2324 (1998). IEEPAD 0018-9219 http://dx.doi.org/10.1109/5.726791
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1
  • 11
    • 84986261676 scopus 로고    scopus 로고
    • Efficient piecewise training of deep structured models for semantic segmentation
    • G. Lin et al., " Efficient piecewise training of deep structured models for semantic segmentation.," in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR '16), pp. 3194-3203 (2016).
    • (2016) IEEE Conf. On Computer Vision and Pattern Recognition (CVPR '16 , pp. 3194-3203
    • Lin, G.1
  • 12
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFS
    • L.-C. Chen et al., " Semantic image segmentation with deep convolutional nets and fully connected CRFS.," in Int. Conf. on Learning Representations (ICLR '15) (2015).
    • (2015) Int. Conf. On Learning Representations (ICLR '15)
    • Chen, L.-C.1
  • 14
    • 84940417787 scopus 로고    scopus 로고
    • Effective semantic pixel labelling with convolutional networks and conditional random fields
    • S. Paisitkriangkrai et al., " Effective semantic pixel labelling with convolutional networks and conditional random fields.," in IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW '15), pp. 36-43 (2015). http://dx.doi.org/10.1109/CVPRW.2015.7301381
    • (2015) IEEE Conf. On Computer Vision and Pattern Recognition Workshops (CVPRW '15 , pp. 36-43
    • Paisitkriangkrai, S.1
  • 15
    • 84907522905 scopus 로고    scopus 로고
    • Analysis of oblique aerial images for land cover and point cloud classification in an urban environment
    • IGRSD2 0196-2892
    • J. Y. Rau, J. P. Jhan and Y. C. Hsu, " Analysis of oblique aerial images for land cover and point cloud classification in an urban environment.," IEEE Trans. Geosci. Remote Sens. 53 (3), 1304-1319 (2015). IGRSD2 0196-2892 http://dx.doi.org/10.1109/TGRS.2014.2337658
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1304-1319
    • Rau, J.Y.1    Jhan, J.P.2    Hsu, Y.C.3
  • 18
    • 77958017904 scopus 로고    scopus 로고
    • SVM-and MRF-based method for accurate classification of hyperspectral images
    • Y. Tarabalka et al., " SVM-and MRF-based method for accurate classification of hyperspectral images.," IEEE Geosci. Remote Sens. Lett. 7 (4), 736-740 (2010). http://dx.doi.org/10.1109/LGRS.2010.2047711
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1
  • 23
    • 85010208970 scopus 로고    scopus 로고
    • Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks
    • M. Kampffmeyer, A.-B. Salberg and R. Jenssen, " Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks.," in IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW '16) (2016). http://dx.doi.org/10.1109/CVPRW.2016.90
    • (2016) IEEE Conf. On Computer Vision and Pattern Recognition Workshops (CVPRW '16)
    • Kampffmeyer, M.1    Salberg, A.-B.2    Jenssen, R.3
  • 25
    • 0000698134 scopus 로고
    • A real-time algorithm for signal analysis with the help of the wavelet transform
    • Springer, Berlin, Heidelberg
    • M. Holschneider et al., " A real-time algorithm for signal analysis with the help of the wavelet transform.," in Wavelets, Time-Frequency Methods and Phase Space, pp. 286-297, Springer, Berlin, Heidelberg (1989).
    • (1989) Wavelets, Time-Frequency Methods and Phase Space , pp. 286-297
    • Holschneider, M.1
  • 28
    • 0036821351 scopus 로고    scopus 로고
    • Multiple classifiers applied to multisource remote sensing data
    • G. J. Briem, J. A. Benediktsson and J. R. Sveinsson, " Multiple classifiers applied to multisource remote sensing data.," IEEE Trans. Geosci. Remote Sens. 40 (10), 2291-2299 (2002). http://dx.doi.org/10.1109/TGRS.2002.802476
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.10 , pp. 2291-2299
    • Briem, G.J.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 29
    • 84860267020 scopus 로고    scopus 로고
    • Multiple classifier system for remote sensing image classification: A review
    • SNSRES 0746-9462
    • P. Du et al., " Multiple classifier system for remote sensing image classification: A review.," Sensors 12 (4), 4764-4792 (2012). SNSRES 0746-9462 http://dx.doi.org/10.3390/s120404764
    • (2012) Sensors , vol.12 , Issue.4 , pp. 4764-4792
    • Du, P.1
  • 30
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • IJSEDK 0143-1161
    • D. Lu and Q. Weng, " A survey of image classification methods and techniques for improving classification performance.," Int. J. Remote Sens. 28 (5), 823-870 (2007). IJSEDK 0143-1161 http://dx.doi.org/10.1080/01431160600746456
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 32
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • NRCGEO 0925-2312
    • A. Chandra and X. Yao, " Evolving hybrid ensembles of learning machines for better generalisation.," Neurocomputing 69 (79), 686-700 (2006). NRCGEO 0925-2312 http://dx.doi.org/10.1016/j.neucom.2005.12.014
    • (2006) Neurocomputing , vol.69 , Issue.79 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 33
    • 34548100943 scopus 로고    scopus 로고
    • Multi-classifier systems: Review and a roadmap for developers
    • R. Ranawana and V. Palade, " Multi-classifier systems: Review and a roadmap for developers.," Int. J. Hybrid Intell. Syst. 3 (1), 35-61 (2006). http://dx.doi.org/10.3233/HIS-2006-3104
    • (2006) Int. J. Hybrid Intell. Syst. , vol.3 , Issue.1 , pp. 35-61
    • Ranawana, R.1    Palade, V.2
  • 39
    • 85027507413 scopus 로고    scopus 로고
    • High-resolution remote sensing data classification over urban areas using random forest ensemble and fully connected conditional random field
    • 245
    • X. Sun et al., " High-resolution remote sensing data classification over urban areas using random forest ensemble and fully connected conditional random field.," ISPRS Int. J. Geo-Inf. 6 (8), 245 (2017). http://dx.doi.org/10.3390/ijgi6080245
    • (2017) ISPRS Int. J. Geo-Inf. , vol.6 , Issue.8
    • Sun, X.1
  • 40
    • 85011339638 scopus 로고    scopus 로고
    • Classification of remote sensed images using random forests and deep learning framework
    • PSISDG 0277-786X
    • S. Piramanayagam et al., " Classification of remote sensed images using random forests and deep learning framework.," Proc. SPIE 10004, 100040L (2016). PSISDG 0277-786X http://dx.doi.org/10.1117/12.2243169
    • (2016) Proc. SPIE , pp. 100040L
    • Piramanayagam, S.1
  • 41
    • 85019943806 scopus 로고    scopus 로고
    • Semantic segmentation of earth observation data using multimodal and multi-scale deep networks
    • N. Audebert, B. L. Saux and S. Lefevre, " Semantic segmentation of earth observation data using multimodal and multi-scale deep networks.," in Asian Conf. on Computer Vision (ACCV '16) (2016).
    • (2016) Asian Conf. On Computer Vision (ACCV '16)
    • Audebert, N.1    Saux, B.L.2    Lefevre, S.3
  • 42
    • 85019963914 scopus 로고    scopus 로고
    • Gated convolutional neural network for semantic segmentation in high-resolution images
    • RSEND3
    • H. Wang et al., " Gated convolutional neural network for semantic segmentation in high-resolution images.," Remote Sens. 9 (5), 446 (2017). RSEND3 http://dx.doi.org/10.3390/rs9050446
    • (2017) Remote Sens. , vol.9 , Issue.5 , pp. 446
    • Wang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.