-
1
-
-
84994217941
-
Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
-
IGRSD2 0196-2892
-
M. Volpi and D. Tuia, " Dense semantic labeling of subdecimeter resolution images with convolutional neural networks.," IEEE Trans. Geosci. Remote Sens. 55 (2), 881-893 (2017). IGRSD2 0196-2892 http://dx.doi.org/10.1109/TGRS.2016.2616585
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.2
, pp. 881-893
-
-
Volpi, M.1
Tuia, D.2
-
4
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
IEEPAD 0018-9219
-
Y. Lecun et al., " Gradient-based learning applied to document recognition.," Proc. IEEE 86 (11), 2278-2324 (1998). IEEPAD 0018-9219 http://dx.doi.org/10.1109/5.726791
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
-
11
-
-
84986261676
-
Efficient piecewise training of deep structured models for semantic segmentation
-
G. Lin et al., " Efficient piecewise training of deep structured models for semantic segmentation.," in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR '16), pp. 3194-3203 (2016).
-
(2016)
IEEE Conf. On Computer Vision and Pattern Recognition (CVPR '16
, pp. 3194-3203
-
-
Lin, G.1
-
12
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected CRFS
-
L.-C. Chen et al., " Semantic image segmentation with deep convolutional nets and fully connected CRFS.," in Int. Conf. on Learning Representations (ICLR '15) (2015).
-
(2015)
Int. Conf. On Learning Representations (ICLR '15)
-
-
Chen, L.-C.1
-
14
-
-
84940417787
-
Effective semantic pixel labelling with convolutional networks and conditional random fields
-
S. Paisitkriangkrai et al., " Effective semantic pixel labelling with convolutional networks and conditional random fields.," in IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW '15), pp. 36-43 (2015). http://dx.doi.org/10.1109/CVPRW.2015.7301381
-
(2015)
IEEE Conf. On Computer Vision and Pattern Recognition Workshops (CVPRW '15
, pp. 36-43
-
-
Paisitkriangkrai, S.1
-
15
-
-
84907522905
-
Analysis of oblique aerial images for land cover and point cloud classification in an urban environment
-
IGRSD2 0196-2892
-
J. Y. Rau, J. P. Jhan and Y. C. Hsu, " Analysis of oblique aerial images for land cover and point cloud classification in an urban environment.," IEEE Trans. Geosci. Remote Sens. 53 (3), 1304-1319 (2015). IGRSD2 0196-2892 http://dx.doi.org/10.1109/TGRS.2014.2337658
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.3
, pp. 1304-1319
-
-
Rau, J.Y.1
Jhan, J.P.2
Hsu, Y.C.3
-
18
-
-
77958017904
-
SVM-and MRF-based method for accurate classification of hyperspectral images
-
Y. Tarabalka et al., " SVM-and MRF-based method for accurate classification of hyperspectral images.," IEEE Geosci. Remote Sens. Lett. 7 (4), 736-740 (2010). http://dx.doi.org/10.1109/LGRS.2010.2047711
-
(2010)
IEEE Geosci. Remote Sens. Lett.
, vol.7
, Issue.4
, pp. 736-740
-
-
Tarabalka, Y.1
-
23
-
-
85010208970
-
Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks
-
M. Kampffmeyer, A.-B. Salberg and R. Jenssen, " Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks.," in IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW '16) (2016). http://dx.doi.org/10.1109/CVPRW.2016.90
-
(2016)
IEEE Conf. On Computer Vision and Pattern Recognition Workshops (CVPRW '16)
-
-
Kampffmeyer, M.1
Salberg, A.-B.2
Jenssen, R.3
-
25
-
-
0000698134
-
A real-time algorithm for signal analysis with the help of the wavelet transform
-
Springer, Berlin, Heidelberg
-
M. Holschneider et al., " A real-time algorithm for signal analysis with the help of the wavelet transform.," in Wavelets, Time-Frequency Methods and Phase Space, pp. 286-297, Springer, Berlin, Heidelberg (1989).
-
(1989)
Wavelets, Time-Frequency Methods and Phase Space
, pp. 286-297
-
-
Holschneider, M.1
-
28
-
-
0036821351
-
Multiple classifiers applied to multisource remote sensing data
-
G. J. Briem, J. A. Benediktsson and J. R. Sveinsson, " Multiple classifiers applied to multisource remote sensing data.," IEEE Trans. Geosci. Remote Sens. 40 (10), 2291-2299 (2002). http://dx.doi.org/10.1109/TGRS.2002.802476
-
(2002)
IEEE Trans. Geosci. Remote Sens.
, vol.40
, Issue.10
, pp. 2291-2299
-
-
Briem, G.J.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
29
-
-
84860267020
-
Multiple classifier system for remote sensing image classification: A review
-
SNSRES 0746-9462
-
P. Du et al., " Multiple classifier system for remote sensing image classification: A review.," Sensors 12 (4), 4764-4792 (2012). SNSRES 0746-9462 http://dx.doi.org/10.3390/s120404764
-
(2012)
Sensors
, vol.12
, Issue.4
, pp. 4764-4792
-
-
Du, P.1
-
30
-
-
33947591833
-
A survey of image classification methods and techniques for improving classification performance
-
IJSEDK 0143-1161
-
D. Lu and Q. Weng, " A survey of image classification methods and techniques for improving classification performance.," Int. J. Remote Sens. 28 (5), 823-870 (2007). IJSEDK 0143-1161 http://dx.doi.org/10.1080/01431160600746456
-
(2007)
Int. J. Remote Sens.
, vol.28
, Issue.5
, pp. 823-870
-
-
Lu, D.1
Weng, Q.2
-
31
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
A. Krogh and J. Vedelsby, " Neural network ensembles, cross validation, and active learning.," in Advances in Neural Information Processing Systems, pp. 231-238 (1995).
-
(1995)
Advances in Neural Information Processing Systems
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
32
-
-
32544431928
-
Evolving hybrid ensembles of learning machines for better generalisation
-
NRCGEO 0925-2312
-
A. Chandra and X. Yao, " Evolving hybrid ensembles of learning machines for better generalisation.," Neurocomputing 69 (79), 686-700 (2006). NRCGEO 0925-2312 http://dx.doi.org/10.1016/j.neucom.2005.12.014
-
(2006)
Neurocomputing
, vol.69
, Issue.79
, pp. 686-700
-
-
Chandra, A.1
Yao, X.2
-
33
-
-
34548100943
-
Multi-classifier systems: Review and a roadmap for developers
-
R. Ranawana and V. Palade, " Multi-classifier systems: Review and a roadmap for developers.," Int. J. Hybrid Intell. Syst. 3 (1), 35-61 (2006). http://dx.doi.org/10.3233/HIS-2006-3104
-
(2006)
Int. J. Hybrid Intell. Syst.
, vol.3
, Issue.1
, pp. 35-61
-
-
Ranawana, R.1
Palade, V.2
-
39
-
-
85027507413
-
High-resolution remote sensing data classification over urban areas using random forest ensemble and fully connected conditional random field
-
245
-
X. Sun et al., " High-resolution remote sensing data classification over urban areas using random forest ensemble and fully connected conditional random field.," ISPRS Int. J. Geo-Inf. 6 (8), 245 (2017). http://dx.doi.org/10.3390/ijgi6080245
-
(2017)
ISPRS Int. J. Geo-Inf.
, vol.6
, Issue.8
-
-
Sun, X.1
-
40
-
-
85011339638
-
Classification of remote sensed images using random forests and deep learning framework
-
PSISDG 0277-786X
-
S. Piramanayagam et al., " Classification of remote sensed images using random forests and deep learning framework.," Proc. SPIE 10004, 100040L (2016). PSISDG 0277-786X http://dx.doi.org/10.1117/12.2243169
-
(2016)
Proc. SPIE
, pp. 100040L
-
-
Piramanayagam, S.1
-
41
-
-
85019943806
-
Semantic segmentation of earth observation data using multimodal and multi-scale deep networks
-
N. Audebert, B. L. Saux and S. Lefevre, " Semantic segmentation of earth observation data using multimodal and multi-scale deep networks.," in Asian Conf. on Computer Vision (ACCV '16) (2016).
-
(2016)
Asian Conf. On Computer Vision (ACCV '16)
-
-
Audebert, N.1
Saux, B.L.2
Lefevre, S.3
-
42
-
-
85019963914
-
Gated convolutional neural network for semantic segmentation in high-resolution images
-
RSEND3
-
H. Wang et al., " Gated convolutional neural network for semantic segmentation in high-resolution images.," Remote Sens. 9 (5), 446 (2017). RSEND3 http://dx.doi.org/10.3390/rs9050446
-
(2017)
Remote Sens.
, vol.9
, Issue.5
, pp. 446
-
-
Wang, H.1
|