-
1
-
-
84977998287
-
Salient band selection for hyperspectral image classification via manifold ranking
-
Wang, Q.; Lin, J.; Yuan, Y. Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279-1289.
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst
, vol.27
, pp. 1279-1289
-
-
Wang, Q.1
Lin, J.2
Yuan, Y.3
-
2
-
-
84973484120
-
Accurate urban road centerline extraction from VHR imagery via multiscale segmentation and tensor voting
-
Cheng, G.; Zhu, F.; Xiang, S.; Wang, Y.; Pan, C. Accurate urban road centerline extraction from VHR imagery via multiscale segmentation and tensor voting. Neurocomputing 2016, 205, 407-420.
-
(2016)
Neurocomputing
, vol.205
, pp. 407-420
-
-
Cheng, G.1
Zhu, F.2
Xiang, S.3
Wang, Y.4
Pan, C.5
-
3
-
-
84943635365
-
Dual-clustering-based hyperspectral band selection by contextual analysis
-
Yuan, Y.; Lin, J.; Wang, Q. Dual-clustering-based hyperspectral band selection by contextual analysis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1431-1445.
-
(2016)
IEEE Trans. Geosci. Remote Sens
, vol.54
, pp. 1431-1445
-
-
Yuan, Y.1
Lin, J.2
Wang, Q.3
-
4
-
-
80052658031
-
egment-based land cover mapping of a suburban area-Comparison of high-resolution remotely sensed datasets using classification trees and test field points
-
Matikainen, L.; Karila, K. egment-based land cover mapping of a suburban area-Comparison of high-resolution remotely sensed datasets using classification trees and test field points. Remote Sens. 2011, 3, 1777-1804.
-
(2011)
Remote Sens
, vol.3
, pp. 1777-1804
-
-
Matikainen, L.1
Karila, K.2
-
5
-
-
85019344774
-
Urban change analysis with multi-sensor multispectral imagery
-
Tang, Y.; Zhang, L. Urban change analysis with multi-sensor multispectral imagery. Remote Sens. 2017, 9, 252.
-
(2017)
Remote Sens
, vol.9
, pp. 252
-
-
Tang, Y.1
Zhang, L.2
-
6
-
-
84944593707
-
Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization
-
Yuan, Y.; Lin, J.; Wang, Q. Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization. IEEE Trans. Cybern. 2016, 46, 2966-2977.
-
(2016)
IEEE Trans. Cybern
, vol.46
, pp. 2966-2977
-
-
Yuan, Y.1
Lin, J.2
Wang, Q.3
-
7
-
-
79958706006
-
Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data
-
Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320-2329.
-
(2011)
Remote Sens. Environ
, vol.115
, pp. 2320-2329
-
-
Zhang, Q.1
Seto, K.C.2
-
10
-
-
84937849144
-
Generative adversarial nets
-
Montreal, QC, Canada, 8-13 December
-
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8-13 December 2014; pp. 2672-2680.
-
(2014)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
11
-
-
84973904792
-
From facial parts responses to face detection: A deep learning approach
-
Santiago, Chile, 13-16 December
-
Yang, S.; Luo, P.; Loy, C.C.; Tang, X. From facial parts responses to face detection: A deep learning approach. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13-16 December 2015; pp. 3676-3684.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 3676-3684
-
-
Yang, S.1
Luo, P.2
Loy, C.C.3
Tang, X.4
-
12
-
-
84981729008
-
Fully convolutional networks for semantic segmentation
-
Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 79, 1337-1342.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.79
, pp. 1337-1342
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
13
-
-
84951834022
-
U-net: Convolutional networks for biomedical image segmentation
-
Springer: Cham, Switzerland
-
Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5-9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234-241.
-
(2015)
Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5-9 October 2015
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
16
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Lake Tahoe, NV, USA, 3-6 December
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3-6 December 2012; pp. 1097-1105.
-
(2012)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
18
-
-
84937522268
-
Going deeper with convolutions
-
Boston, MA, USA, 7-12 June
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 1-9.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
19
-
-
84986274465
-
Deep residual learning for image recognition
-
Seattle, WA, USA, 27-30 June
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27-30 June 2016; pp. 770-778.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
20
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
Montreal, QC, Canada, 7-12 December
-
Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7-12 December 2015; pp. 91-99.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
21
-
-
84990051868
-
-
arXiv arXiv:1606.00915
-
Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv 2016, arXiv:1606.00915.
-
(2016)
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
-
-
Chen, L.C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
22
-
-
84986247435
-
Learning deep features for discriminative localization
-
Seattle, WA, USA, 27-30 June
-
Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27-30 June 2016; pp. 2921-2929.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2921-2929
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Oliva, A.4
Torralba, A.5
-
23
-
-
84921020001
-
A survey on spectral-spatial classification techniques based on attribute profiles
-
Ghamisi, P.; Dalla Mura, M.; Benediktsson, J.A. A survey on spectral-spatial classification techniques based on attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335-2353.
-
(2015)
IEEE Trans. Geosci. Remote Sens
, vol.53
, pp. 2335-2353
-
-
Ghamisi, P.1
Dalla Mura, M.2
Benediktsson, J.A.3
-
24
-
-
84979916810
-
A review of modern approaches to classification of remote sensing data
-
Springer: Dordrecht, The Netherlands
-
Bruzzone, L.; Demir, B. A review of modern approaches to classification of remote sensing data. In Land Use and Land Cover Mapping in Europe; Springer: Dordrecht, The Netherlands, 2014; pp. 127-143.
-
(2014)
Land Use and Land Cover Mapping in Europe
, pp. 127-143
-
-
Bruzzone, L.1
Demir, B.2
-
25
-
-
84976384382
-
Deep learning for remote sensing data: A technical tutorial on the state of the art
-
Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22-40.
-
(2016)
IEEE Geosci. Remote Sens. Mag
, vol.4
, pp. 22-40
-
-
Zhang, L.1
Zhang, L.2
Du, B.3
-
26
-
-
84940417787
-
Effective semantic pixel labelling with convolutional networks and Conditional Random Fields
-
Boston, MA, USA, 7-12 June
-
Paisitkriangkrai, S.; Sherrah, J.; Janney, P.; van-Den Hengel, A. Effective semantic pixel labelling with convolutional networks and Conditional Random Fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7-12 June 2015; pp. 36-43.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
, pp. 36-43
-
-
Paisitkriangkrai, S.1
Sherrah, J.2
Janney, P.3
van-Den Hengel, A.4
-
27
-
-
85007500060
-
How useful is region-based classification of remote sensing images in a deep learning framework?
-
Beijing, China, 10-15 July
-
Audebert, N.; Le Saux, B.; Lefevre, S. How useful is region-based classification of remote sensing images in a deep learning framework? In Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium, Beijing, China, 10-15 July 2016; pp. 5091-5094.
-
(2016)
Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium
, pp. 5091-5094
-
-
Audebert, N.1
Le Saux, B.2
Lefevre, S.3
-
28
-
-
85017603808
-
-
arXiv arXiv:1612.01337
-
Marmanis, D.; Schindler, K.; Wegner, J.D.; Galliani, S.; Datcu, M.; Stilla, U. Classification with an edge: Improving semantic image segmentation with boundary detection. arXiv 2016, arXiv:1612.01337.
-
(2016)
Classification with an edge: Improving semantic image segmentation with boundary detection
-
-
Marmanis, D.1
Schindler, K.2
Wegner, J.D.3
Galliani, S.4
Datcu, M.5
Stilla, U.6
-
29
-
-
85010208970
-
Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks
-
Seattle, WA, USA, 27-30 June
-
Kampffmeyer, M.; Salberg, A.B.; Jenssen, R. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 27-30 June 2016; pp. 1-9.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
, pp. 1-9
-
-
Kampffmeyer, M.1
Salberg, A.B.2
Jenssen, R.3
-
30
-
-
84990864139
-
Higher order conditional random fields in deep neural network
-
Amsterdam, The Netherlands, 8-16 October 2016 Springer Cham, Switzerland
-
Arnab, A.; Jayasumana, S.; Zheng, S.; Torr, P.H. Higher order conditional random fields in deep neural networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8-16 October 2016; Springer: Cham, Switzerland, 2016, pp. 524-540.
-
(2016)
In Proceedings of the European Conference on Computer Vision
, pp. 524-540
-
-
Arnab, A.1
Jayasumana, S.2
Zheng, S.3
Torr, P.H.4
-
31
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
Los Alamitos, CA, USA, 7-13 December
-
Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.; Su, Z.; Du, D.; Huang, C.; Torr, P.H. Conditional random fields as recurrent neural networks. In Proceedings of the IEEE Conference on International Conference on Computer Vision, Los Alamitos, CA, USA, 7-13 December 2015; pp. 1529-1537.
-
(2015)
Proceedings of the IEEE Conference on International Conference on Computer Vision
, pp. 1529-1537
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.H.8
-
34
-
-
85019882187
-
-
arXiv arXiv:1610.02579
-
Zeng, X.; Ouyang, W.; Yan, J.; Li, H.; Xiao, T.;Wang, K.; Liu, Y.; Zhou, Y.; Yang, B.;Wang, Z.; et al. Crafting GBD-Net for Object Detection. arXiv 2016, arXiv:1610.02579.
-
(2016)
Crafting GBD-Net for Object Detection
-
-
Zeng, X.1
Ouyang, W.2
Yan, J.3
Li, H.4
Xiao, T.5
Wang, K.6
Liu, Y.7
Zhou, Y.8
Yang, B.9
Wang, Z.10
-
35
-
-
0003685012
-
A mathematical theory of communication
-
Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 5, 3-55.
-
(1948)
Bell Syst. Tech. J
, vol.5
, pp. 3-55
-
-
Shannon, C.E.1
-
37
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D.E.; Hinton, G.E.;Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533-536.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
38
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211-252.
-
(2015)
Int. J. Comput. Vis
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
39
-
-
85010054420
-
Improving neural networks by preventing co-adaptation of feature detectors
-
Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. Comput. Sci. 2012, 3, 212-223.
-
(2012)
Comput. Sci
, vol.3
, pp. 212-223
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
40
-
-
84913580146
-
-
arXiv arXiv:1408.5093
-
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture for fast feature embedding. arXiv 2014, 675-678, arXiv:1408.5093.
-
(2014)
Caffe: Convolutional architecture for fast feature embedding
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
41
-
-
85019942300
-
-
(accessed on 1 April 2015)
-
International Society for Photogrammetry and Remote Sensing (ISPRS). 2D Semantic Labeling Contest. Available online: http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html (accessed on 1 April 2015).
-
2D Semantic Labeling Contest
-
-
-
42
-
-
84962815548
-
Matconvnet: Convolutional neural networks for matlab
-
Brisbane, Australia, 26-30 October 2015
-
Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM international conference on Multimedia, Brisbane, Australia, 26-30 October 2015, 2015; pp. 689-692.
-
(2015)
Proceedings of the 23rd ACM international conference on Multimedia
, pp. 689-692
-
-
Vedaldi, A.1
Lenc, K.2
-
44
-
-
85019923734
-
-
arXiv arXiv:1609.07916
-
Tschannen, M.; Cavigelli, L.; Mentzer, F.; Wiatowski, T.; Benini, L. Deep structured features for semantic segmentation. arXiv 2016, arXiv:1609.07916.
-
(2016)
Deep structured features for semantic segmentation
-
-
Tschannen, M.1
Cavigelli, L.2
Mentzer, F.3
Wiatowski, T.4
Benini, L.5
-
45
-
-
84986261676
-
Efficient piecewise training of deep structured models for semantic segmentation
-
Seattle, WA, USA, 27-30 June
-
Lin, G.; Shen, C.; van den Hengel, A.; Reid, I. Efficient piecewise training of deep structured models for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27-30 June 2016; pp. 3194-3203.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3194-3203
-
-
Lin, G.1
Shen, C.2
van den Hengel, A.3
Reid, I.4
-
46
-
-
85011339638
-
Classification of remote sensed images using random forests and deep learning framework
-
International Society for Optics and Photonics: Edinburgh, UK
-
Piramanayagam, S.; Schwartzkopf, W.; Koehler, F.; Saber, E. Classification of remote sensed images using random forests and deep learning framework. In Proceedings of the SPIE Remote Sensing; International Society for Optics and Photonics: Edinburgh, UK, 2016; p. 100040L.
-
(2016)
Proceedings of the SPIE Remote Sensing
-
-
Piramanayagam, S.1
Schwartzkopf, W.2
Koehler, F.3
Saber, E.4
|