메뉴 건너뛰기




Volumn 9, Issue 5, 2017, Pages

Gated convolutional neural network for semantic segmentation in high-resolution images

Author keywords

CNN; Deep learning; Gate; ISPRS; Remote sensing; Semantic segmentation

Indexed keywords

CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; IMAGE PROCESSING; IMAGE RECONSTRUCTION; NEURAL NETWORKS; PIXELS; REMOTE SENSING; SEMANTIC WEB; SEMANTICS;

EID: 85019963914     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9050446     Document Type: Article
Times cited : (198)

References (47)
  • 1
    • 84977998287 scopus 로고    scopus 로고
    • Salient band selection for hyperspectral image classification via manifold ranking
    • Wang, Q.; Lin, J.; Yuan, Y. Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279-1289.
    • (2016) IEEE Trans. Neural Netw. Learn. Syst , vol.27 , pp. 1279-1289
    • Wang, Q.1    Lin, J.2    Yuan, Y.3
  • 2
    • 84973484120 scopus 로고    scopus 로고
    • Accurate urban road centerline extraction from VHR imagery via multiscale segmentation and tensor voting
    • Cheng, G.; Zhu, F.; Xiang, S.; Wang, Y.; Pan, C. Accurate urban road centerline extraction from VHR imagery via multiscale segmentation and tensor voting. Neurocomputing 2016, 205, 407-420.
    • (2016) Neurocomputing , vol.205 , pp. 407-420
    • Cheng, G.1    Zhu, F.2    Xiang, S.3    Wang, Y.4    Pan, C.5
  • 3
    • 84943635365 scopus 로고    scopus 로고
    • Dual-clustering-based hyperspectral band selection by contextual analysis
    • Yuan, Y.; Lin, J.; Wang, Q. Dual-clustering-based hyperspectral band selection by contextual analysis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1431-1445.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 1431-1445
    • Yuan, Y.1    Lin, J.2    Wang, Q.3
  • 4
    • 80052658031 scopus 로고    scopus 로고
    • egment-based land cover mapping of a suburban area-Comparison of high-resolution remotely sensed datasets using classification trees and test field points
    • Matikainen, L.; Karila, K. egment-based land cover mapping of a suburban area-Comparison of high-resolution remotely sensed datasets using classification trees and test field points. Remote Sens. 2011, 3, 1777-1804.
    • (2011) Remote Sens , vol.3 , pp. 1777-1804
    • Matikainen, L.1    Karila, K.2
  • 5
    • 85019344774 scopus 로고    scopus 로고
    • Urban change analysis with multi-sensor multispectral imagery
    • Tang, Y.; Zhang, L. Urban change analysis with multi-sensor multispectral imagery. Remote Sens. 2017, 9, 252.
    • (2017) Remote Sens , vol.9 , pp. 252
    • Tang, Y.1    Zhang, L.2
  • 6
    • 84944593707 scopus 로고    scopus 로고
    • Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization
    • Yuan, Y.; Lin, J.; Wang, Q. Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization. IEEE Trans. Cybern. 2016, 46, 2966-2977.
    • (2016) IEEE Trans. Cybern , vol.46 , pp. 2966-2977
    • Yuan, Y.1    Lin, J.2    Wang, Q.3
  • 7
    • 79958706006 scopus 로고    scopus 로고
    • Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data
    • Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320-2329.
    • (2011) Remote Sens. Environ , vol.115 , pp. 2320-2329
    • Zhang, Q.1    Seto, K.C.2
  • 23
    • 84921020001 scopus 로고    scopus 로고
    • A survey on spectral-spatial classification techniques based on attribute profiles
    • Ghamisi, P.; Dalla Mura, M.; Benediktsson, J.A. A survey on spectral-spatial classification techniques based on attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335-2353.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 2335-2353
    • Ghamisi, P.1    Dalla Mura, M.2    Benediktsson, J.A.3
  • 24
    • 84979916810 scopus 로고    scopus 로고
    • A review of modern approaches to classification of remote sensing data
    • Springer: Dordrecht, The Netherlands
    • Bruzzone, L.; Demir, B. A review of modern approaches to classification of remote sensing data. In Land Use and Land Cover Mapping in Europe; Springer: Dordrecht, The Netherlands, 2014; pp. 127-143.
    • (2014) Land Use and Land Cover Mapping in Europe , pp. 127-143
    • Bruzzone, L.1    Demir, B.2
  • 25
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22-40.
    • (2016) IEEE Geosci. Remote Sens. Mag , vol.4 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 29
    • 85010208970 scopus 로고    scopus 로고
    • Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks
    • Seattle, WA, USA, 27-30 June
    • Kampffmeyer, M.; Salberg, A.B.; Jenssen, R. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 27-30 June 2016; pp. 1-9.
    • (2016) Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops , pp. 1-9
    • Kampffmeyer, M.1    Salberg, A.B.2    Jenssen, R.3
  • 30
    • 84990864139 scopus 로고    scopus 로고
    • Higher order conditional random fields in deep neural network
    • Amsterdam, The Netherlands, 8-16 October 2016 Springer Cham, Switzerland
    • Arnab, A.; Jayasumana, S.; Zheng, S.; Torr, P.H. Higher order conditional random fields in deep neural networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8-16 October 2016; Springer: Cham, Switzerland, 2016, pp. 524-540.
    • (2016) In Proceedings of the European Conference on Computer Vision , pp. 524-540
    • Arnab, A.1    Jayasumana, S.2    Zheng, S.3    Torr, P.H.4
  • 35
    • 0003685012 scopus 로고
    • A mathematical theory of communication
    • Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 5, 3-55.
    • (1948) Bell Syst. Tech. J , vol.5 , pp. 3-55
    • Shannon, C.E.1
  • 37
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E.; Hinton, G.E.;Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 41
    • 85019942300 scopus 로고    scopus 로고
    • (accessed on 1 April 2015)
    • International Society for Photogrammetry and Remote Sensing (ISPRS). 2D Semantic Labeling Contest. Available online: http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html (accessed on 1 April 2015).
    • 2D Semantic Labeling Contest
  • 46
    • 85011339638 scopus 로고    scopus 로고
    • Classification of remote sensed images using random forests and deep learning framework
    • International Society for Optics and Photonics: Edinburgh, UK
    • Piramanayagam, S.; Schwartzkopf, W.; Koehler, F.; Saber, E. Classification of remote sensed images using random forests and deep learning framework. In Proceedings of the SPIE Remote Sensing; International Society for Optics and Photonics: Edinburgh, UK, 2016; p. 100040L.
    • (2016) Proceedings of the SPIE Remote Sensing
    • Piramanayagam, S.1    Schwartzkopf, W.2    Koehler, F.3    Saber, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.