-
1
-
-
84960460639
-
Engineering cellular metabolism
-
Nielsen, J., Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185-1197 (2016).
-
(2016)
Cell
, vol.164
, pp. 1185-1197
-
-
Nielsen, J.1
Keasling, J.D.2
-
2
-
-
80051704380
-
Engineering microbial factories for synthesis of value-added products
-
Du, J., Shao, Z., Zhao, H. Engineering microbial factories for synthesis of value-added products. J. Ind. Microbiol. Biotechnol. 38, 873-890 (2011).
-
(2011)
J. Ind. Microbiol. Biotechnol.
, vol.38
, pp. 873-890
-
-
Du, J.1
Shao, Z.2
Zhao, H.3
-
3
-
-
84925464682
-
Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites
-
Lian, J., Zhao, H. Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites. J. Ind. Microbiol. Biotechnol. 42, 437-451 (2015).
-
(2015)
J. Ind. Microbiol. Biotechnol.
, vol.42
, pp. 437-451
-
-
Lian, J.1
Zhao, H.2
-
4
-
-
84901808659
-
Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
-
Lian, J., Si, T., Nair, N. U., Zhao, H. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab. Eng. 24, 139-149 (2014).
-
(2014)
Metab. Eng.
, vol.24
, pp. 139-149
-
-
Lian, J.1
Si, T.2
Nair, N.U.3
Zhao, H.4
-
5
-
-
84896297653
-
Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R, 3R)-butanediol
-
Lian, J., Chao, R., Zhao, H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R, 3R)-butanediol. Metab. Eng. 23, 92-99 (2014).
-
(2014)
Metab. Eng.
, vol.23
, pp. 92-99
-
-
Lian, J.1
Chao, R.2
Zhao, H.3
-
6
-
-
33644797658
-
Gene disruption in the budding yeast Saccharomyces cerevisiae
-
Hegemann, J. H., Guldener, U., Kohler, G. J. Gene disruption in the budding yeast Saccharomyces cerevisiae. Methods Mol. Biol. 313, 129-144 (2006).
-
(2006)
Methods Mol. Biol.
, vol.313
, pp. 129-144
-
-
Hegemann, J.H.1
Guldener, U.2
Kohler, G.J.3
-
7
-
-
84928205754
-
High-throughput functional genomics using CRISPR-Cas9
-
Shalem, O., Sanjana, N. E., Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299-311 (2015).
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 299-311
-
-
Shalem, O.1
Sanjana, N.E.2
Zhang, F.3
-
8
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
9
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013).
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
10
-
-
84955216261
-
Accelerated genome engineering through multiplexing
-
Bao, Z., Cobb, R. E., Zhao, H. Accelerated genome engineering through multiplexing. Wiley Interdiscip. Rev. Syst. Biol. Med. 8, 5-21 (2016).
-
(2016)
Wiley Interdiscip. Rev. Syst. Biol. Med.
, vol.8
, pp. 5-21
-
-
Bao, Z.1
Cobb, R.E.2
Zhao, H.3
-
11
-
-
84944632276
-
The new state of the art: Cas9 for gene activation and repression
-
La Russa, M. F., Qi, L. S. The new state of the art: Cas9 for gene activation and repression. Mol. Cell. Biol. 35, 3800-3809 (2015).
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 3800-3809
-
-
La Russa, M.F.1
Qi, L.S.2
-
12
-
-
84884907424
-
CRISPR RNA-guided activation of endogenous human genes
-
Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977-979 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 977-979
-
-
Maeder, M.L.1
-
13
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequencespecific control of gene expression
-
Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequencespecific control of gene expression. Cell 152, 1173-1183 (2013).
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
-
14
-
-
84908352138
-
Genome-scale CRISPR-mediated control of gene repression and activation
-
Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647-661 (2014).
-
(2014)
Cell
, vol.159
, pp. 647-661
-
-
Gilbert, L.A.1
-
15
-
-
84920992414
-
Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
-
Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339-350 (2015).
-
(2015)
Cell
, vol.160
, pp. 339-350
-
-
Zalatan, J.G.1
-
16
-
-
84946471431
-
Cas9 gRNA engineering for genome editing, activation and repression
-
Kiani, S. et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods 12, 1051-1054 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 1051-1054
-
-
Kiani, S.1
-
17
-
-
84947225411
-
Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease
-
Dahlman, J. E. et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat. Biotechnol. 33, 1159-1161 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1159-1161
-
-
Dahlman, J.E.1
-
18
-
-
84952682854
-
CRISPR/Cas9 advances engineering of microbial cell factories
-
Jakociunas, T., Jensen, M. K., Keasling, J. D. CRISPR/Cas9 advances engineering of microbial cell factories. Metab. Eng. 34, 44-59 (2016).
-
(2016)
Metab. Eng.
, vol.34
, pp. 44-59
-
-
Jakociunas, T.1
Jensen, M.K.2
Keasling, J.D.3
-
19
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336-4343 (2013).
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
-
20
-
-
84929572600
-
Homology-integrated CRISPR-Cas (HI-CRISPR) system for onestep multigene disruption in Saccharomyces cerevisiae
-
Bao, Z. et al. Homology-integrated CRISPR-Cas (HI-CRISPR) system for onestep multigene disruption in Saccharomyces cerevisiae. ACS Synth. Biol. 4, 585-594 (2015).
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 585-594
-
-
Bao, Z.1
-
21
-
-
84988917002
-
Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration
-
Lian, J., Jin, R., Zhao, H. Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration. Biotechnol. Bioeng. 113, 2462-2473 (2016).
-
(2016)
Biotechnol. Bioeng.
, vol.113
, pp. 2462-2473
-
-
Lian, J.1
Jin, R.2
Zhao, H.3
-
22
-
-
85018466549
-
A new era of genome integrationsimply cut and paste
-
Liu, Z., Liang, Y., Ang, E. L., Zhao, H. A new era of genome integrationsimply cut and paste. ACS Synth. Biol. 6, 601-609 (2017).
-
(2017)
ACS Synth. Biol.
, vol.6
, pp. 601-609
-
-
Liu, Z.1
Liang, Y.2
Ang, E.L.3
Zhao, H.4
-
23
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451 (2013).
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
-
24
-
-
84926521955
-
Highly efficient Cas9-mediated transcriptional programming
-
Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326-328 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 326-328
-
-
Chavez, A.1
-
25
-
-
84884663630
-
Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
-
Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA 110, 15644-15649 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 15644-15649
-
-
Hou, Z.1
-
26
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116-1121 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 1116-1121
-
-
Esvelt, K.M.1
-
27
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485 (2015).
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
-
28
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191 (2015).
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
-
29
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771 (2015).
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
-
30
-
-
84917707014
-
Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae
-
Xie, W., Ye, L., Lv, X., Xu, H., Yu, H. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab. Eng. 28, 8-18 (2015).
-
(2015)
Metab. Eng.
, vol.28
, pp. 8-18
-
-
Xie, W.1
Ye, L.2
Lv, X.3
Xu, H.4
Yu, H.5
-
31
-
-
34447543117
-
High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous
-
Verwaal, R. et al. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl. Environ. Microbiol. 73, 4342-4350 (2007).
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 4342-4350
-
-
Verwaal, R.1
-
32
-
-
84872377725
-
Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production
-
Ozaydin, B., Burd, H., Lee, T. S., Keasling, J. D. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab. Eng. 15, 174-183 (2013).
-
(2013)
Metab. Eng.
, vol.15
, pp. 174-183
-
-
Ozaydin, B.1
Burd, H.2
Lee, T.S.3
Keasling, J.D.4
-
33
-
-
44449098258
-
Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase
-
Paradise, E. M., Kirby, J., Chan, R., Keasling, J. D. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Biotechnol. Bioeng. 100, 371-378 (2008).
-
(2008)
Biotechnol. Bioeng.
, vol.100
, pp. 371-378
-
-
Paradise, E.M.1
Kirby, J.2
Chan, R.3
Keasling, J.D.4
-
34
-
-
84863629890
-
Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae
-
Hou, J., Tyo, K. E., Liu, Z., Petranovic, D., Nielsen, J. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res. 12, 491-510 (2012).
-
(2012)
FEMS Yeast Res.
, vol.12
, pp. 491-510
-
-
Hou, J.1
Tyo, K.E.2
Liu, Z.3
Petranovic, D.4
Nielsen, J.5
-
35
-
-
85020737000
-
Automated multiplex genome-scale engineering in yeast
-
Si, T. et al. Automated multiplex genome-scale engineering in yeast. Nat. Commun. 8, 15187 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 15187
-
-
Si, T.1
-
36
-
-
84971219370
-
N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae
-
Tang, H. et al. N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae. Sci. Rep. 6, 25654 (2016).
-
(2016)
Sci. Rep.
, vol.6
, pp. 25654
-
-
Tang, H.1
-
37
-
-
84865278051
-
Customized optimization of metabolic pathways by combinatorial transcriptional engineering
-
Du, J., Yuan, Y., Si, T., Lian, J., Zhao, H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 40, e142 (2012).
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. e142
-
-
Du, J.1
Yuan, Y.2
Si, T.3
Lian, J.4
Zhao, H.5
-
38
-
-
77957329119
-
Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli
-
Ajikumar, P. K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70-74 (2010).
-
(2010)
Science
, vol.330
, pp. 70-74
-
-
Ajikumar, P.K.1
-
39
-
-
84877804801
-
Modular optimization of multi-gene pathways for fatty acids production in E. Coli
-
Xu, P. et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 4, 1409 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 1409
-
-
Xu, P.1
-
40
-
-
24644515752
-
Tuning genetic control through promoter engineering
-
Alper, H., Fischer, C., Nevoigt, E., Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102, 12678-12683 (2005).
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 12678-12683
-
-
Alper, H.1
Fischer, C.2
Nevoigt, E.3
Stephanopoulos, G.4
-
41
-
-
33747078696
-
Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes
-
Pfleger, B. F., Pitera, D. J., Smolke, C. D., Keasling, J. D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24, 1027-1032 (2006).
-
(2006)
Nat. Biotechnol.
, vol.24
, pp. 1027-1032
-
-
Pfleger, B.F.1
Pitera, D.J.2
Smolke, C.D.3
Keasling, J.D.4
-
42
-
-
84881004490
-
Use of expressionenhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications
-
Curran, K. A., Karim, A. S., Gupta, A., Alper, H. S. Use of expressionenhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metab. Eng. 19, 88-97 (2013).
-
(2013)
Metab. Eng.
, vol.19
, pp. 88-97
-
-
Curran, K.A.1
Karim, A.S.2
Gupta, A.3
Alper, H.S.4
-
43
-
-
84859633048
-
Design of a dynamic sensorregulator system for production of chemicals and fuels derived from fatty acids
-
Zhang, F., Carothers, J. M., Keasling, J. D. Design of a dynamic sensorregulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354-359 (2012).
-
(2012)
Nat. Biotechnol.
, vol.30
, pp. 354-359
-
-
Zhang, F.1
Carothers, J.M.2
Keasling, J.D.3
-
44
-
-
68949161807
-
Programming cells by multiplex genome engineering and accelerated evolution
-
Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894-898 (2009).
-
(2009)
Nature
, vol.460
, pp. 894-898
-
-
Wang, H.H.1
-
45
-
-
77955459156
-
Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides
-
Warner, J. R., Reeder, P. J., Karimpour-Fard, A., Woodruff, L. B., Gill, R. T. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat. Biotechnol. 28, 856-862 (2010).
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 856-862
-
-
Warner, J.R.1
Reeder, P.J.2
Karimpour-Fard, A.3
Woodruff, L.B.4
Gill, R.T.5
-
46
-
-
84862984706
-
Strategy for directing combinatorial genome engineering in Escherichia coli
-
Sandoval, N. R. et al. Strategy for directing combinatorial genome engineering in Escherichia coli. Proc. Natl Acad. Sci. USA 109, 10540-10545 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 10540-10545
-
-
Sandoval, N.R.1
-
47
-
-
84890920555
-
Yeast oligo-mediated genome engineering (YOGE)
-
DiCarlo, J. E. et al. Yeast oligo-mediated genome engineering (YOGE). ACS Synth. Biol. 2, 741-749 (2013).
-
(2013)
ACS Synth. Biol.
, vol.2
, pp. 741-749
-
-
DiCarlo, J.E.1
-
48
-
-
85015147103
-
Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies
-
Jensen, E. D. et al. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microb. Cell Fact. 16, 46 (2017).
-
(2017)
Microb. Cell Fact.
, vol.16
, pp. 46
-
-
Jensen, E.D.1
-
49
-
-
84907483760
-
Altered sterol composition renders yeast thermotolerant
-
Caspeta, L. et al. Altered sterol composition renders yeast thermotolerant. Science 346, 75-78 (2014).
-
(2014)
Science
, vol.346
, pp. 75-78
-
-
Caspeta, L.1
-
50
-
-
84874499132
-
Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
-
Kim, S. R. et al. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS ONE 8, e57048 (2013).
-
(2013)
PLoS ONE
, vol.8
, pp. e57048
-
-
Kim, S.R.1
-
51
-
-
59649108349
-
DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
-
Shao, Z., Zhao, H., Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 37, e16 (2009).
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. e16
-
-
Shao, Z.1
Zhao, H.2
Zhao, H.3
-
52
-
-
84925666935
-
Reversal of the-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals
-
Lian, J., Zhao, H. Reversal of the-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth. Biol. 4, 332-341 (2015).
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 332-341
-
-
Lian, J.1
Zhao, H.2
-
53
-
-
84978708772
-
Functional reconstitution of a pyruvate dehydrogenase in the cytosol of Saccharomyces cerevisiae through lipoylation machinery engineering
-
Lian, J., Zhao, H. Functional reconstitution of a pyruvate dehydrogenase in the cytosol of Saccharomyces cerevisiae through lipoylation machinery engineering. ACS Synth. Biol. 5, 689-697 (2016).
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 689-697
-
-
Lian, J.1
Zhao, H.2
-
54
-
-
78650324157
-
Adaptation of dinitrosalicylic acid method to microtiter plates
-
Goncąlves, C., Rodriguez-Jasso, R. M., Gomes, N., Teixeira, J. A., Belo, I. Adaptation of dinitrosalicylic acid method to microtiter plates. Anal. Methods 2, 2046-2048 (2010).
-
(2010)
Anal. Methods
, vol.2
, pp. 2046-2048
-
-
Goncąlves, C.1
Rodriguez-Jasso, R.M.2
Gomes, N.3
Teixeira, J.A.4
Belo, I.5
-
55
-
-
84923096541
-
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
-
Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583-588 (2015).
-
(2015)
Nature
, vol.517
, pp. 583-588
-
-
Konermann, S.1
-
56
-
-
84960094162
-
Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design
-
Smith, J. D. et al. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol. 17, 45 (2016).
-
(2016)
Genome Biol.
, vol.17
, pp. 45
-
-
Smith, J.D.1
|