메뉴 건너뛰기




Volumn 8, Issue 1, 2017, Pages

Structural basis of arrestin-3 activation and signaling

Author keywords

[No Author keywords available]

Indexed keywords

ARRESTIN 3; PHOSPHATE; PHYTIC ACID; RETINA S ANTIGEN; UNCLASSIFIED DRUG; ARRESTIN3; MITOGEN ACTIVATED PROTEIN KINASE 10; RECOMBINANT PROTEIN;

EID: 85033606940     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-017-01218-8     Document Type: Article
Times cited : (89)

References (68)
  • 1
    • 0000025689 scopus 로고
    • Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments
    • Wilden, U., Hall, S. W. & Kuhn, H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc. Natl Acad. Sci. USA 83, 1174-1178 (1986).
    • (1986) Proc. Natl Acad. Sci. USA , vol.83 , pp. 1174-1178
    • Wilden, U.1    Hall, S.W.2    Kuhn, H.3
  • 3
    • 34547512353 scopus 로고    scopus 로고
    • Functional specialization of beta-Arrestin interactions revealed by proteomic analysis
    • Xiao, K. et al. Functional specialization of beta-Arrestin interactions revealed by proteomic analysis. Proc. Natl Acad. Sci. USA 104, 12011-12016 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 12011-12016
    • Xiao, K.1
  • 4
    • 0034802172 scopus 로고    scopus 로고
    • Crystal structure of beta-Arrestin at 1.9 A: Possible mechanism of receptor binding and membrane translocation
    • Han, M., Gurevich, V. V., Vishnivetskiy, S. A., Sigler, P. B. & Schubert, C. Crystal structure of beta-Arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Strucutre 9, 869-880 (2001).
    • (2001) Strucutre , vol.9 , pp. 869-880
    • Han, M.1    Gurevich, V.V.2    Vishnivetskiy, S.A.3    Sigler, P.B.4    Schubert, C.5
  • 5
    • 0027241013 scopus 로고
    • Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-Activated phosphorylated rhodopsin
    • Gurevich, V. V. & Benovic, J. L. Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-Activated phosphorylated rhodopsin. J. Biol. Chem. 268, 11628-11638 (1993).
    • (1993) J. Biol. Chem. , vol.268 , pp. 11628-11638
    • Gurevich, V.V.1    Benovic, J.L.2
  • 6
    • 79551687952 scopus 로고    scopus 로고
    • Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes
    • Zhan, X., Gimenez, L. E., Gurevich, V. V. & Spiller, B. W. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J. Mol. Biol. 406, 467-478 (2011).
    • (2011) J. Mol. Biol. , vol.406 , pp. 467-478
    • Zhan, X.1    Gimenez, L.E.2    Gurevich, V.V.3    Spiller, B.W.4
  • 7
    • 0033574274 scopus 로고    scopus 로고
    • The 2.8 A crystal structure of visual arrestin: A model for arrestin's regulation
    • Hirsch, J. A., Schubert, C., Gurevich, V. V. & Sigler, P. B. The 2.8 A crystal structure of visual arrestin: A model for arrestin's regulation. Cell 97, 257-269 (1999).
    • (1999) Cell , vol.97 , pp. 257-269
    • Hirsch, J.A.1    Schubert, C.2    Gurevich, V.V.3    Sigler, P.B.4
  • 8
    • 28144443994 scopus 로고    scopus 로고
    • Crystal structure of cone arrestin at 2.3 A: Evolution of receptor specificity
    • Sutton, R. B. et al. Crystal structure of cone arrestin at 2.3 A: evolution of receptor specificity. J. Mol. Biol. 354, 1069-1080 (2005).
    • (2005) J. Mol. Biol. , vol.354 , pp. 1069-1080
    • Sutton, R.B.1
  • 9
    • 33646414189 scopus 로고    scopus 로고
    • The structural basis of arrestin-mediated regulation of G-protein-coupled receptors
    • Gurevich, V. V. & Gurevich, E. V. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol. Ther. 110, 465-502 (2006).
    • (2006) Pharmacol. Ther. , vol.110 , pp. 465-502
    • Gurevich, V.V.1    Gurevich, E.V.2
  • 10
    • 84877581910 scopus 로고    scopus 로고
    • Crystal structure of pre-Activated arrestin p44
    • Kim, Y. J. et al. Crystal structure of pre-Activated arrestin p44. Nature 497, 142-146 (2013).
    • (2013) Nature , vol.497 , pp. 142-146
    • Kim, Y.J.1
  • 11
    • 84877581626 scopus 로고    scopus 로고
    • Structure of active beta-Arrestin-1 bound to a G-protein-coupled receptor phosphopeptide
    • Shukla, A. K. et al. Structure of active beta-Arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497, 137-141 (2013).
    • (2013) Nature , vol.497 , pp. 137-141
    • Shukla, A.K.1
  • 12
    • 84946116372 scopus 로고    scopus 로고
    • Structural evidence for the role of polar core residue Arg175 in arrestin activation
    • Granzin, J., Stadler, A., Cousin, A., Schlesinger, R. & Batra-Safferling, R. Structural evidence for the role of polar core residue Arg175 in arrestin activation. Sci. Rep. 5, 15808 (2015).
    • (2015) Sci. Rep. , vol.5
    • Granzin, J.1    Stadler, A.2    Cousin, A.3    Schlesinger, R.4    Batra-Safferling, R.5
  • 13
    • 84938359988 scopus 로고    scopus 로고
    • Crystal structure of rhodopsin bound to arrestin determined by femtosecond X-ray laser
    • Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin determined by femtosecond X-ray laser. Nature 523, 561-567 (2015).
    • (2015) Nature , vol.523 , pp. 561-567
    • Kang, Y.1
  • 14
    • 84861740178 scopus 로고    scopus 로고
    • Silent scaffolds: Inhibition of c-Jun N-Terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant
    • Breitman, M. et al. Silent scaffolds: inhibition OF c-Jun N-Terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant. J. Biol. Chem. 287, 19653-19664 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 19653-19664
    • Breitman, M.1
  • 15
    • 0034711397 scopus 로고    scopus 로고
    • Beta-Arrestin 2: A receptor-regulated MAPK scaffold for the activation of JNK3
    • McDonald, P. H. et al. Beta-Arrestin 2: A receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574-1577 (2000).
    • (2000) Science , vol.290 , pp. 1574-1577
    • McDonald, P.H.1
  • 16
    • 0035313703 scopus 로고    scopus 로고
    • Expanding roles for beta-Arrestins as scaffolds and adapters in GPCR signaling and trafficking
    • Miller, W. E. & Lefkowitz, R. J. Expanding roles for beta-Arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell. Biol. 13, 139-145 (2001).
    • (2001) Curr. Opin. Cell. Biol. , vol.13 , pp. 139-145
    • Miller, W.E.1    Lefkowitz, R.J.2
  • 17
    • 84885132736 scopus 로고    scopus 로고
    • JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-Activated protein (MAP) kinase kinases
    • Zhan, X., Kaoud, T. S., Kook, S., Dalby, K. N. & Gurevich, V. V. JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-Activated protein (MAP) kinase kinases. J. Biol. Chem. 288, 28535-28547 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 28535-28547
    • Zhan, X.1    Kaoud, T.S.2    Kook, S.3    Dalby, K.N.4    Gurevich, V.V.5
  • 19
    • 0026050303 scopus 로고
    • Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin
    • Palczewski, K., Pulvermuller, A., Buczylko, J. & Hofmann, K. P. Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J. Biol. Chem. 266, 18649-18654 (1991).
    • (1991) J. Biol. Chem. , vol.266 , pp. 18649-18654
    • Palczewski, K.1    Pulvermuller, A.2    Buczylko, J.3    Hofmann, K.P.4
  • 20
    • 84892856654 scopus 로고    scopus 로고
    • Arrestin-3 binds the MAP kinase JNK3alpha2 via multiple sites on both domains
    • Zhan, X., Perez, A., Gimenez, L. E., Vishnivetskiy, S. A. & Gurevich, V. V. Arrestin-3 binds the MAP kinase JNK3alpha2 via multiple sites on both domains. Cell. Signal. 26, 766-776 (2014).
    • (2014) Cell. Signal. , vol.26 , pp. 766-776
    • Zhan, X.1    Perez, A.2    Gimenez, L.E.3    Vishnivetskiy, S.A.4    Gurevich, V.V.5
  • 21
    • 58649095949 scopus 로고    scopus 로고
    • How does arrestin assemble MAPKs into a signaling complex?
    • Song, X., Coffa, S., Fu, H. & Gurevich, V. V. How does arrestin assemble MAPKs into a signaling complex? J. Biol. Chem. 284, 685-695 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 685-695
    • Song, X.1    Coffa, S.2    Fu, H.3    Gurevich, V.V.4
  • 22
    • 0027389279 scopus 로고
    • Comparison of the levels of inositol metabolites in transformed haemopoietic cells and their normal counterparts
    • Bunce, C. M. et al. Comparison of the levels of inositol metabolites in transformed haemopoietic cells and their normal counterparts. Biochem. J. 289, 667-673 (1993). (Pt 3).
    • (1993) Biochem. J. , vol.289 , pp. 667-673
    • Bunce, C.M.1
  • 23
    • 0029036869 scopus 로고
    • Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate
    • Sasakawa, N., Sharif, M. & Hanley, M. R. Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem. Pharmacol. 50, 137-146 (1995).
    • (1995) Biochem. Pharmacol. , vol.50 , pp. 137-146
    • Sasakawa, N.1    Sharif, M.2    Hanley, M.R.3
  • 24
    • 33646942810 scopus 로고    scopus 로고
    • Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding
    • Milano, S. K., Kim, Y. M., Stefano, F. P., Benovic, J. L. & Brenner, C. Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J. Biol. Chem. 281, 9812-9823 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 9812-9823
    • Milano, S.K.1    Kim, Y.M.2    Stefano, F.P.3    Benovic, J.L.4    Brenner, C.5
  • 25
    • 0029907599 scopus 로고    scopus 로고
    • Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin
    • Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768-770 (1996).
    • (1996) Science , vol.274 , pp. 768-770
    • Farrens, D.L.1    Altenbach, C.2    Yang, K.3    Hubbell, W.L.4    Khorana, H.G.5
  • 26
    • 52949102889 scopus 로고    scopus 로고
    • Crystal structure of opsin in its G-protein-interacting conformation
    • Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497-502 (2008).
    • (2008) Nature , vol.455 , pp. 497-502
    • Scheerer, P.1
  • 27
    • 80051658642 scopus 로고    scopus 로고
    • Crystal structure of the beta2 adrenergic receptor-Gs protein complex
    • Rasmussen, S. G. et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477, 549-555 (2011).
    • (2011) Nature , vol.477 , pp. 549-555
    • Rasmussen, S.G.1
  • 28
    • 84916610476 scopus 로고    scopus 로고
    • Crystal structure of a common GPCR-binding interface for G protein and arrestin
    • Szczepek, M. et al. Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat. Commun. 5, 4801 (2014).
    • (2014) Nat. Commun. , vol.5
    • Szczepek, M.1
  • 29
    • 84872529567 scopus 로고    scopus 로고
    • Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin
    • Zhuang, T. et al. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc. Natl Acad. Sci. USA 110, 942-947 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 942-947
    • Zhuang, T.1
  • 30
    • 34548232365 scopus 로고    scopus 로고
    • Inference of macromolecular assemblies from crystalline state
    • Krissinel, E. B. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774-797s (2007).
    • (2007) J. Mol. Biol. , vol.372 , pp. 774-797s
    • Krissinel, E.B.1    Henrick, K.2
  • 31
    • 84905370362 scopus 로고    scopus 로고
    • Identification of receptor binding-induced conformational changes in non-visual arrestins
    • Zhuo, Y., Vishnivetskiy, S. A., Zhan, X., Gurevich, V. V. & Klug, C. S. Identification of receptor binding-induced conformational changes in non-visual arrestins. J. Biol. Chem. 289, 20991-21002 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 20991-21002
    • Zhuo, Y.1    Vishnivetskiy, S.A.2    Zhan, X.3    Gurevich, V.V.4    Klug, C.S.5
  • 32
    • 84958539644 scopus 로고    scopus 로고
    • Self-Association of arrestin family members
    • Chen, Q. et al. Self-Association of arrestin family members. Handb. Exp. Pharmacol. 219, 205-223 (2014).
    • (2014) Handb. Exp. Pharmacol. , vol.219 , pp. 205-223
    • Chen, Q.1
  • 33
    • 84858608294 scopus 로고    scopus 로고
    • Role of receptor-Attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors
    • Gimenez, L. E. et al. Role of receptor-Attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors. J. Biol. Chem. 287, 9028-9040 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 9028-9040
    • Gimenez, L.E.1
  • 34
    • 84898641862 scopus 로고    scopus 로고
    • Mutations in arrestin-3 differentially affect binding to neuropeptide y receptor subtypes
    • Gimenez, L. E., Babilon, S., Wanka, L., Beck-Sickinger, A. G. & Gurevich, V. V. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes. Cell Signal. 26, 1523-1531 (2014).
    • (2014) Cell Signal. , vol.26 , pp. 1523-1531
    • Gimenez, L.E.1    Babilon, S.2    Wanka, L.3    Beck-Sickinger, A.G.4    Gurevich, V.V.5
  • 35
    • 0037066145 scopus 로고    scopus 로고
    • Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis
    • Milano, S. K., Pace, H. C., Kim, Y. M., Brenner, C. & Benovic, J. L. Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41, 3321-3328 (2002).
    • (2002) Biochemistry , vol.41 , pp. 3321-3328
    • Milano, S.K.1    Pace, H.C.2    Kim, Y.M.3    Brenner, C.4    Benovic, J.L.5
  • 36
    • 0033613938 scopus 로고    scopus 로고
    • Beta-Arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes
    • Luttrell, L. M. et al. Beta-Arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283, 655-661 (1999).
    • (1999) Science , vol.283 , pp. 655-661
    • Luttrell, L.M.1
  • 37
    • 78049312804 scopus 로고    scopus 로고
    • Structure and mechanism of ORF36, an amino sugar oxidizing enzyme in everninomicin biosynthesis
    • Vey, J. L. et al. Structure and mechanism of ORF36, an amino sugar oxidizing enzyme in everninomicin biosynthesis. Biochemistry 49, 9306-9317 (2010).
    • (2010) Biochemistry , vol.49 , pp. 9306-9317
    • Vey, J.L.1
  • 38
    • 77951673942 scopus 로고    scopus 로고
    • X-ray structure of kijd3, a key enzyme involved in the biosynthesis of D-kijanose
    • Bruender, N. A., Thoden, J. B. & Holden, H. M. X-ray structure of kijd3, a key enzyme involved in the biosynthesis of D-kijanose. Biochemistry 49, 3517-3524 (2010).
    • (2010) Biochemistry , vol.49 , pp. 3517-3524
    • Bruender, N.A.1    Thoden, J.B.2    Holden, H.M.3
  • 39
    • 0037113983 scopus 로고    scopus 로고
    • Transition of arrestin into the active receptor-binding state requires an extended interdomain hinge
    • Vishnivetskiy, S. A., Hirsch, J. A., Velez, M. G., Gurevich, Y. V. & Gurevich, V. V. Transition of arrestin into the active receptor-binding state requires an extended interdomain hinge. J. Biol. Chem. 277, 43961-43967 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 43961-43967
    • Vishnivetskiy, S.A.1    Hirsch, J.A.2    Velez, M.G.3    Gurevich, Y.V.4    Gurevich, V.V.5
  • 40
    • 33947607229 scopus 로고    scopus 로고
    • Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity
    • Hanson, S. M. et al. Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J. Mol. Biol. 368, 375-387 (2007).
    • (2007) J. Mol. Biol. , vol.368 , pp. 375-387
    • Hanson, S.M.1
  • 41
    • 84455200995 scopus 로고    scopus 로고
    • Inward facing conformations of the MetNI methionine ABC transporter: Implications for the mechanism of transinhibition
    • Johnson, E., Nguyen, P. T., Yeates, T. O. & Rees, D. C. Inward facing conformations of the MetNI methionine ABC transporter: implications for the mechanism of transinhibition. Protein Sci. 21, 84-96 (2012).
    • (2012) Protein Sci. , vol.21 , pp. 84-96
    • Johnson, E.1    Nguyen, P.T.2    Yeates, T.O.3    Rees, D.C.4
  • 42
    • 0346243924 scopus 로고    scopus 로고
    • Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor
    • Renault, L., Guibert, B. & Cherfils, J. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426, 525-530 (2003).
    • (2003) Nature , vol.426 , pp. 525-530
    • Renault, L.1    Guibert, B.2    Cherfils, J.3
  • 43
    • 78650415624 scopus 로고    scopus 로고
    • Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction
    • Westblade, L. F. et al. Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Res. 38, 8357-8369 (2010).
    • (2010) Nucleic Acids Res. , vol.38 , pp. 8357-8369
    • Westblade, L.F.1
  • 44
    • 0034255123 scopus 로고    scopus 로고
    • Speeding molecular recognition by using the folding funnel: The fly-casting mechanism
    • Shoemaker, B. A., Portman, J. J. & Wolynes, P. G. Speeding molecular recognition by using the folding funnel: The fly-casting mechanism. Proc. Natl Acad. Sci. USA 97, 8868-8873 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 8868-8873
    • Shoemaker, B.A.1    Portman, J.J.2    Wolynes, P.G.3
  • 45
    • 34250821717 scopus 로고    scopus 로고
    • Mechanism of coupled folding and binding of an intrinsically disordered protein
    • Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021-1025 (2007).
    • (2007) Nature , vol.447 , pp. 1021-1025
    • Sugase, K.1    Dyson, H.J.2    Wright, P.E.3
  • 46
    • 33645506641 scopus 로고    scopus 로고
    • Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin
    • Hanson, S. M. et al. Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc. Natl Acad. Sci. USA 103, 4900-4905 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 4900-4905
    • Hanson, S.M.1
  • 47
    • 70450225035 scopus 로고    scopus 로고
    • The role of arrestin alpha-helix i in receptor binding
    • Vishnivetskiy, S. A. et al. The role of arrestin alpha-helix I in receptor binding. J. Mol. Biol. 395, 42-54 (2010).
    • (2010) J. Mol. Biol. , vol.395 , pp. 42-54
    • Vishnivetskiy, S.A.1
  • 48
    • 0033616494 scopus 로고    scopus 로고
    • The beta2-Adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis
    • Laporte, S. A. et al. The beta2-Adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc. Natl Acad. Sci. USA 96, 3712-3717 (1999).
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 3712-3717
    • Laporte, S.A.1
  • 49
    • 70350351401 scopus 로고    scopus 로고
    • Structure of an arrestin-2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking
    • Kang, D. S. et al. Structure of an arrestin-2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. J. Biol. Chem. 284, 29860-29872 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 29860-29872
    • Kang, D.S.1
  • 50
    • 0033597328 scopus 로고    scopus 로고
    • How does arrestin respond to the phosphorylated state of rhodopsin?
    • Vishnivetskiy, S. A. et al. How does arrestin respond to the phosphorylated state of rhodopsin? J. Biol. Chem. 274, 11451-11454 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 11451-11454
    • Vishnivetskiy, S.A.1
  • 51
    • 0034731304 scopus 로고    scopus 로고
    • An additional phosphate-binding element in arrestin molecule. Implications for the mechanism of arrestin activation
    • Vishnivetskiy, S. A. et al. An additional phosphate-binding element in arrestin molecule. Implications for the mechanism of arrestin activation. J. Biol. Chem. 275, 41049-41057 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 41049-41057
    • Vishnivetskiy, S.A.1
  • 52
    • 13444291851 scopus 로고    scopus 로고
    • Functional antagonism of different G protein-coupled receptor kinases for beta-Arrestin-mediated angiotensin II receptor signaling
    • Kim, J. et al. Functional antagonism of different G protein-coupled receptor kinases for beta-Arrestin-mediated angiotensin II receptor signaling. Proc. Natl Acad. Sci. USA 102, 1442-1447 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 1442-1447
    • Kim, J.1
  • 53
    • 13444270337 scopus 로고    scopus 로고
    • Different G protein-coupled receptor kinases govern G protein and beta-Arrestin-mediated signaling of V2 vasopressin receptor
    • Ren, X. R. et al. Different G protein-coupled receptor kinases govern G protein and beta-Arrestin-mediated signaling of V2 vasopressin receptor. Proc. Natl Acad. Sci. USA 102, 1448-1453 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 1448-1453
    • Ren, X.R.1
  • 54
    • 84906232914 scopus 로고    scopus 로고
    • Visualization of arrestin recruitment by a G-protein-coupled receptor
    • Shukla, A. K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218-222 (2014).
    • (2014) Nature , vol.512 , pp. 218-222
    • Shukla, A.K.1
  • 55
    • 84901472810 scopus 로고    scopus 로고
    • Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: Evidence for structural plasticity and multiple docking modes in arrestin-rhodopsin binding
    • Sinha, A., Jones Brunette, A. M., Fay, J. F., Schafer, C. T. & Farrens, D. L. Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: evidence for structural plasticity and multiple docking modes in arrestin-rhodopsin binding. Biochemistry 53, 3294-3307 (2014).
    • (2014) Biochemistry , vol.53 , pp. 3294-3307
    • Sinha, A.1    Jones Brunette, A.M.2    Fay, J.F.3    Schafer, C.T.4    Farrens, D.L.5
  • 56
    • 84941048021 scopus 로고    scopus 로고
    • Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR
    • Yang, F. et al. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nat. Commun. 6, 8202 (2015).
    • (2015) Nat. Commun. , vol.6
    • Yang, F.1
  • 57
    • 80051616441 scopus 로고    scopus 로고
    • Distinct phosphorylation sites on the beta(2)-Adrenergic receptor establish a barcode that encodes differential functions of beta-Arrestin
    • Nobles, K. N. et al. Distinct phosphorylation sites on the beta(2)-Adrenergic receptor establish a barcode that encodes differential functions of beta-Arrestin. Sci. Signal. 4, ra51 (2011).
    • (2011) Sci. Signal. , vol.4
    • Nobles, K.N.1
  • 59
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data collected in oscillation mode
    • Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326 (1997).
    • (2004) Methods Enzymol. , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 60
    • 34447508216 scopus 로고    scopus 로고
    • Phaser crystallographic software
    • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674 (2007).
    • (2007) J. Appl. Crystallogr. , vol.40 , pp. 658-674
    • McCoy, A.J.1
  • 62
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta. Crystallogr. D Biol. Crystallogr. 66, 213-221 (2010).
    • (2010) Acta. Crystallogr. D Biol. Crystallogr. , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 63
    • 0025315518 scopus 로고
    • S-Antigen: Preparation and characterization of site-specific monoclonal antibodies
    • Donoso, L. A. et al. S-Antigen: preparation and characterization of site-specific monoclonal antibodies. Curr. Eye Res. 9, 343-355 (1990).
    • (1990) Curr. Eye Res. , vol.9 , pp. 343-355
    • Donoso, L.A.1
  • 64
    • 84877846721 scopus 로고    scopus 로고
    • Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins
    • Toledo Warshaviak, D., Khramtsov, V. V., Cascio, D., Altenbach, C. & Hubbell, W. L. Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins. J. Magn. Reson. 232, 53-61 (2013).
    • (2013) J. Magn. Reson. , vol.232 , pp. 53-61
    • Toledo Warshaviak, D.1    Khramtsov, V.V.2    Cascio, D.3    Altenbach, C.4    Hubbell, W.L.5
  • 65
    • 84859888767 scopus 로고    scopus 로고
    • DEER distance measurements on proteins
    • Jeschke, G. DEER distance measurements on proteins. Annu. Rev. Phys. Chem. 63, 419-446 (2012).
    • (2012) Annu. Rev. Phys. Chem. , vol.63 , pp. 419-446
    • Jeschke, G.1
  • 67
    • 84948575628 scopus 로고    scopus 로고
    • Calculations and publication-quality illustrations for analytical ultracentrifugation data
    • Brautigam, C. A. Calculations and publication-quality illustrations for analytical ultracentrifugation data. Methods Enzymol. 562, 109-133 (2015).
    • (2015) Methods Enzymol. , vol.562 , pp. 109-133
    • Brautigam, C.A.1
  • 68
    • 0034009520 scopus 로고    scopus 로고
    • Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling
    • Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606-1619 (2000).
    • (2000) Biophys. J. , vol.78 , pp. 1606-1619
    • Schuck, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.