메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages

Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens

Author keywords

[No Author keywords available]

Indexed keywords

CONTINUING DEVELOPMENT; DESIGN AND IMPLEMENTATIONS; EXPERIMENTAL CONDITIONS; GAUSSIAN MIXTURE MODEL; HIGH-THROUGHPUT SCREENS; IMAGE-BASED SCREENINGS; ONLINE PHENOTYPE DISCOVERY; QUALITATIVE ANALYSIS;

EID: 47149116088     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-9-264     Document Type: Article
Times cited : (41)

References (32)
  • 1
    • 33846466430 scopus 로고    scopus 로고
    • Applications of high-throughput RNAi screens to problems in cell and developmental biology
    • 1775003 17244760
    • Perrimon N Mathey-Prevot B Applications of high-throughput RNAi screens to problems in cell and developmental biology Genetics 2007, 175:7-16. 1775003 17244760
    • (2007) Genetics , vol.175 , pp. 7-16
    • Perrimon, N.1    Mathey-Prevot, B.2
  • 2
    • 33750887331 scopus 로고    scopus 로고
    • functional genomic RNAi screen for novel regulators of RTK/ERK signaling
    • 17086199
    • Friedman A Perrimon N functional genomic RNAi screen for novel regulators of RTK/ERK signaling Nature 2006, 444:230-234. 17086199
    • (2006) Nature , vol.444 , pp. 230-234
    • Friedman, A.1    Perrimon, N.2
  • 5
    • 34247242135 scopus 로고    scopus 로고
    • An automated feedback system with the hybrid model of scoring and classification for solving over-segmentation problems in RNAi high content screening
    • 17444941
    • Li FH Zhou X Wong STC An automated feedback system with the hybrid model of scoring and classification for solving over-segmentation problems in RNAi high content screening Journal of Microscopy 2007, 226(2):121-132. 17444941
    • (2007) Journal of Microscopy , vol.226 , Issue.2 , pp. 121-132
    • Li, F.H.1    Zhou, X.2    Wong, S.T.C.3
  • 7
    • 34250882643 scopus 로고    scopus 로고
    • Quantitative morphological signatures define local signaling networks regulating cell morphology
    • 17588932
    • Bakal C Aach J Church G Perrimon N Quantitative morphological signatures define local signaling networks regulating cell morphology Science 2007, 316:1753-1756. 17588932
    • (2007) Science , vol.316 , pp. 1753-1756
    • Bakal, C.1    Aach, J.2    Church, G.3    Perrimon, N.4
  • 9
    • 0242628975 scopus 로고    scopus 로고
    • Feature reduction for improved recognition of subcellular location patterns in fluorescence microscope images
    • Huang K Velliste M Murphy RF Feature reduction for improved recognition of subcellular location patterns in fluorescence microscope images Proceedings of SPIE 2003, 4692:307-318.
    • (2003) Proceedings of SPIE , vol.4692 , pp. 307-318
    • Huang, K.1    Velliste, M.2    Murphy, R.F.3
  • 11
    • 34250216344 scopus 로고    scopus 로고
    • Image based multivariate profiling of drug responses from single cells
    • 17401369
    • Loo L Wu L Altshuler S Image based multivariate profiling of drug responses from single cells Nature Methods 2007, 4(5):445-453. 17401369
    • (2007) Nature Methods , vol.4 , Issue.5 , pp. 445-453
    • Loo, L.1    Wu, L.2    Altshuler, S.3
  • 12
  • 13
    • 0242679438 scopus 로고    scopus 로고
    • Finding the number of clusters in a dataset: An information-theoretic approach
    • Sugar C James G Finding the number of clusters in a dataset: An information-theoretic approach Journal of the American Statistical Association 2003, 98(463):750-763.
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.463 , pp. 750-763
    • Sugar, C.1    James, G.2
  • 14
    • 36749055295 scopus 로고    scopus 로고
    • Determining the number of clusters using the weighted gap statistics
    • 17425640
    • Yan M Ye K Determining the number of clusters using the weighted gap statistics Biometrics 2007, 63:1031-1037. 17425640
    • (2007) Biometrics , vol.63 , pp. 1031-1037
    • Yan, M.1    Ye, K.2
  • 15
    • 0037172724 scopus 로고    scopus 로고
    • A Prediction-based resampling method to estimate the number of clusters in a dataset
    • research 0036.1-0036.21
    • Dudoit S Fridlyand J A Prediction-based resampling method to estimate the number of clusters in a dataset Genome Biology 2002, 3(7):rEsearch 0036.1 0036.21.
    • (2002) Genome Biology , vol.3 , Issue.7
    • Dudoit, S.1    Fridlyand, J.2
  • 17
    • 0036565310 scopus 로고    scopus 로고
    • Cluster number selection for a small set of samples using the Bayesian Ying-Yang model
    • 18244472
    • Guo P Chen P Lyu M Cluster number selection for a small set of samples using the Bayesian Ying-Yang model IEEE Transactions on Neural Networks 2002, 13(3):757-763. 18244472
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 757-763
    • Guo, P.1    Chen, P.2    Lyu, M.3
  • 18
    • 33847103751 scopus 로고    scopus 로고
    • Cluster detection using Bayes factors from over-parameterized cluster models
    • Gangnon R Clayton M Cluster detection using Bayes factors from over-parameterized cluster models Environmental and Ecological Statistics 2007, 14:69-82.
    • (2007) Environmental and Ecological Statistics , vol.14 , pp. 69-82
    • Gangnon, R.1    Clayton, M.2
  • 19
    • 0037958764 scopus 로고    scopus 로고
    • Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically
    • 12724291
    • Bickel D Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically Bioinformatics 2003, 19(7):818-824. 12724291
    • (2003) Bioinformatics , vol.19 , Issue.7 , pp. 818-824
    • Bickel, D.1
  • 21
    • 33646678467 scopus 로고    scopus 로고
    • Optimisation of Gaussian mixture model for satellite image classification
    • Zhou X Wang X Optimisation of Gaussian mixture model for satellite image classification IEE Proceedings-Vision, Image and Signal Process 2006, 153(3):349-356.
    • (2006) IEE Proceedings-Vision, Image and Signal Process , vol.153 , Issue.3 , pp. 349-356
    • Zhou, X.1    Wang, X.2
  • 24
    • 37549005552 scopus 로고    scopus 로고
    • High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles
    • (9 October 2007) 2151944 17925027
    • Li FH Zhou X Zhu J Ma J Huang X Wong STC High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles BMC Biotechnology 2007, 7:66. (9 October 2007) 2151944 17925027
    • (2007) BMC Biotechnology , vol.7 , pp. 66
    • Li, F.H.1    Zhou, X.2    Zhu, J.3    Ma, J.4    Huang, X.5    Wong, S.T.C.6
  • 27
    • 33747113980 scopus 로고
    • Beugungstheorie des schneidencerfarhens undseiner verbesserten form, der phasenkontrastmethode
    • Zernike F Beugungstheorie des schneidencerfarhens undseiner verbesserten form, der phasenkontrastmethode Physica 1934, 1:689-704.
    • (1934) Physica , vol.1 , pp. 689-704
    • Zernike, F.1
  • 30
    • 27644575157 scopus 로고    scopus 로고
    • Coordinaring ERK/MAPK signalling through scaffolds and inhibitors
    • 16227978
    • Koch W Coordinaring ERK/MAPK signalling through scaffolds and inhibitors Nature Reviews Molecular Cell Biology 2005, 6(11):827-838. 16227978
    • (2005) Nature Reviews Molecular Cell Biology , vol.6 , Issue.11 , pp. 827-838
    • Koch, W.1
  • 32
    • 33750021210 scopus 로고    scopus 로고
    • Evaluation and comparison of gene clustering methods in microarray analysis
    • 16882653
    • Thalamuth A Mukhopadhyay I Zheng X Tseng G Evaluation and comparison of gene clustering methods in microarray analysis Bioinformatics 2006, 22(19):2405-2412. 16882653
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2405-2412
    • Thalamuth, A.1    Mukhopadhyay, I.2    Zheng, X.3    Tseng, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.