메뉴 건너뛰기




Volumn 5, Issue 2, 2016, Pages 210-249

GSNs: Generative stochastic networks

Author keywords

Auto encoders; Deep learning; Generative models

Indexed keywords


EID: 85033452370     PISSN: None     EISSN: 20498772     Source Type: Journal    
DOI: 10.1093/imaiai/iaw003     Document Type: Article
Times cited : (46)

References (65)
  • 3
    • 0141518801 scopus 로고    scopus 로고
    • Learning iterative image reconstruction in the neural abstraction pyramid
    • Behnke, S. (2001) Learning iterative image reconstruction in the neural abstraction pyramid. Int. J. Comput. Intell. Appl., 1, 427-438.
    • (2001) Int. J. Comput. Intell. Appl. , vol.1 , pp. 427-438
    • Behnke, S.1
  • 10
    • 84899017362 scopus 로고    scopus 로고
    • Generalized denoising auto-encoders as generative models
    • Bengio, Y., Yao, L., Alain, G. & Vincent, P. (2013c) Generalized denoising auto-encoders as generative models. NIPS'2013.
    • (2013) NIPS'2013
    • Bengio, Y.1    Yao, L.2    Alain, G.3    Vincent, P.4
  • 15
    • 79959650504 scopus 로고    scopus 로고
    • Quickly generating representative samples from an RBM-derived process
    • Breuleux, O., Bengio, Y. & Vincent, P. (2011) Quickly generating representative samples from an RBM-derived process. Neural Comput., 23, 2053-2073.
    • (2011) Neural Comput. , vol.23 , pp. 2053-2073
    • Breuleux, O.1    Bengio, Y.2    Vincent, P.3
  • 17
    • 0035885345 scopus 로고    scopus 로고
    • Comparison of perturbation bounds for the stationary distribution of a Markov chain
    • Cho, G. E., Meyer, C. D. & Meyer, C. D. (2000) Comparison of perturbation bounds for the stationary distribution of a Markov chain. Linear Algebra Appl., 335, 137-150.
    • (2000) Linear Algebra Appl. , vol.335 , pp. 137-150
    • Cho, G.E.1    Meyer, C.D.2    Meyer, C.D.3
  • 18
    • 84877799221 scopus 로고    scopus 로고
    • Enhanced gradient for training restricted Boltzmann machines
    • Cho, K. H., Raiko, T. & Ilin, A. (2013) Enhanced gradient for training restricted Boltzmann machines. Neural Comput., 25, 805-831.
    • (2013) Neural Comput. , vol.25 , pp. 805-831
    • Cho, K.H.1    Raiko, T.2    Ilin, A.3
  • 19
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • Collobert, R. & Weston, J. (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. ICML'2008.
    • (2008) ICML'2008
    • Collobert, R.1    Weston, J.2
  • 20
    • 85162069624 scopus 로고    scopus 로고
    • Phone recognition with the mean-covariance restricted Boltzmann machine
    • Dahl, G. E., Ranzato, M., Mohamed, A. & Hinton., G. E. (2010) Phone recognition with the mean-covariance restricted Boltzmann machine. NIPS'2010.
    • (2010) NIPS'2010
    • Dahl, G.E.1    Ranzato, M.2    Mohamed, A.3    Hinton, G.E.4
  • 22
    • 79959842828 scopus 로고    scopus 로고
    • Binary coding of speech spectrograms using a deep auto-encoder
    • Chiba, Japan: Makuhari
    • Deng, L., Seltzer, M., Yu, D., Acero, A., Mohamed, A. & Hinton, G. (2010) Binary coding of speech spectrograms using a deep auto-encoder. Interspeech 2010. Chiba, Japan: Makuhari.
    • (2010) Interspeech 2010
    • Deng, L.1    Seltzer, M.2    Yu, D.3    Acero, A.4    Mohamed, A.5    Hinton, G.6
  • 25
    • 84944735469 scopus 로고    scopus 로고
    • Book in preparation for MIT Press, Last Accessed March 1, 2015.
    • Goodfellow, I. J., Courville, A. & Bengio, Y. (2015) Deep Learning. Book in preparation for MIT Press. http://www.deeplearningbook.org/. Last Accessed March 1, 2015.
    • (2015) Deep Learning
    • Goodfellow, I.J.1    Courville, A.2    Bengio, Y.3
  • 29
    • 84857889007 scopus 로고    scopus 로고
    • Noise-contrastive estimation: A new estimation principle for unnormalized statistical models
    • Gutmann, M. & Hyvarinen, A. (2010) Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. AISTATS'2010.
    • (2010) AISTATS'2010
    • Gutmann, M.1    Hyvarinen, A.2
  • 31
  • 33
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • Hinton, G. E., Dayan, P., Frey, B. J. & Neal, R. M. (1995) The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1558-1561.
    • (1995) Science , vol.268 , pp. 1558-1561
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 34
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S. & Teh, Y. W. (2006) A fast learning algorithm for deep belief nets. Neural Comput., 18, 1527-1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 36
    • 33749425692 scopus 로고    scopus 로고
    • Consistency of pseudolikelihood estimation of fully visible Boltzmann machines
    • Hyvärinen, A. (2006) Consistency of pseudolikelihood estimation of fully visible Boltzmann machines. Neural Comput, 18, 2283-2292.
    • (2006) Neural Comput , vol.18 , pp. 2283-2292
    • Hyvärinen, A.1
  • 39
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I. & Hinton, G. (2012) ImageNet classification with deep convolutional neural networks. NIPS'2012.
    • (2012) NIPS'2012
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 40
    • 84862524901 scopus 로고    scopus 로고
    • The Neural Autoregressive Distribution Estimator
    • Larochelle, H. & Murray, I. (2011) The Neural Autoregressive Distribution Estimator. AISTATS'2011.
    • (2011) AISTATS'2011
    • Larochelle, H.1    Murray, I.2
  • 41
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • Cambridge, MA: MIT Press
    • Lee, H., Battle, A., Raina, R. & Ng, A. (2007) Efficient sparse coding algorithms. NIPS'06. Cambridge, MA: MIT Press, pp. 801-808.
    • (2007) NIPS'06 , pp. 801-808
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.4
  • 42
    • 84887360102 scopus 로고    scopus 로고
    • Exploring compositional high-order pattern potentials for structured output learning
    • Li, Y., Tarlow, D. & Zemel, R. (2013) Exploring compositional high-order pattern potentials for structured output learning. CVPR'2013.
    • (2013) CVPR'2013
    • Li, Y.1    Tarlow, D.2    Zemel, R.3
  • 43
    • 84883151355 scopus 로고    scopus 로고
    • Texture modeling with convolutional spike-and-slab RBMs and deep extensions
    • Luo, H., Carrier, P. L., Courville, A. & Bengio, Y. (2013) Texture modeling with convolutional spike-and-slab RBMs and deep extensions. AISTATS'2013.
    • (2013) AISTATS'2013
    • Luo, H.1    Carrier, P.L.2    Courville, A.3    Bengio, Y.4
  • 44
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Mnih, A. & Gregor, K. (2014) Neural variational inference and learning in belief networks. ICML'2014.
    • (2014) ICML'2014
    • Mnih, A.1    Gregor, K.2
  • 45
    • 84872571941 scopus 로고    scopus 로고
    • Deep Boltzmann machines and the centering trick
    • Neural Networks: Tricks of the Trade, (G. Montavon, G. Orr & K.-R. Müller eds)., Berlin: Springer
    • Montavon, G. & Muller, K.-R. (2012) Deep Boltzmann machines and the centering trick. Neural Networks: Tricks of the Trade (G. Montavon, G. Orr & K.-R. Müller eds). Lecture Notes in Computer Science, vol. 7700. Berlin: Springer, pp. 621-637.
    • (2012) Lecture Notes in Computer Science , vol.7700 , pp. 621-637
    • Montavon, G.1    Muller, K.-R.2
  • 49
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • Ranzato, M., Poultney, C., Chopra, S. & LeCun, Y. (2007) Efficient learning of sparse representations with an energy-based model. NIPS'2006.
    • (2007) NIPS'2006
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 51
    • 84867136416 scopus 로고    scopus 로고
    • A generative process for sampling contractive autoencoders
    • Rifai, S., Bengio, Y., Dauphin, Y. & Vincent, P. (2012) A generative process for sampling contractive autoencoders. ICML'12.
    • (2012) ICML'12
    • Rifai, S.1    Bengio, Y.2    Dauphin, Y.3    Vincent, P.4
  • 54
    • 0001296683 scopus 로고
    • Perturbation theory and finite Markov chains
    • Schweitzer, P. J. (1968) Perturbation theory and finite Markov chains. J. Appl. Probab., 5, 401-413.
    • (1968) J. Appl. Probab. , vol.5 , pp. 401-413
    • Schweitzer, P.J.1
  • 55
    • 84865801985 scopus 로고    scopus 로고
    • Conversational speech transcription using context-dependent deep neural networks
    • Seide, F., Li, G. & Yu, D. (2011) Conversational speech transcription using context-dependent deep neural networks. Interspeech 2011, pp. 437-440.
    • (2011) Interspeech 2011 , pp. 437-440
    • Seide, F.1    Li, G.2    Yu, D.3
  • 56
    • 0000938157 scopus 로고    scopus 로고
    • Learning continuous attractors in recurrent networks
    • Cambridge, MA: MIT Press
    • Seung, S. H. (1998) Learning continuous attractors in recurrent networks. NIPS'97. Cambridge, MA: MIT Press, pp. 654-660.
    • (1998) NIPS'97 , pp. 654-660
    • Seung, S.H.1
  • 58
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • (W. W. Cohen, A. McCallum & S. T. Roweis eds). New York, NY, USA: ACM
    • Tieleman, T. (2008) Training restricted Boltzmann machines using approximations to the likelihood gradient. ICML 2008 (W. W. Cohen, A. McCallum & S. T. Roweis eds). New York, NY, USA: ACM, pp. 1064-1071.
    • (2008) ICML 2008 , pp. 1064-1071
    • Tieleman, T.1
  • 59
  • 60
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms connectionist reinforcement learning
    • Williams, R. J. (1992) Simple statistical gradient-following algorithms connectionist reinforcement learning. Mach. Learn., 8, 229-256.
    • (1992) Mach. Learn. , vol.8 , pp. 229-256
    • Williams, R.J.1
  • 62
  • 63
    • 33644756784 scopus 로고    scopus 로고
    • On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates
    • Younes, L. (1998) On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics and Stochastics Models, pp. 177-228.
    • (1998) Stochastics and Stochastics Models , pp. 177-228
    • Younes, L.1
  • 64
    • 84919913066 scopus 로고    scopus 로고
    • Deep supervised and convolutional generative stochastic network for protein secondary structure prediction
    • Zhou, J. & Troyanskaya, O. G. (2014) Deep supervised and convolutional generative stochastic network for protein secondary structure prediction. ICML'2014.
    • (2014) ICML'2014
    • Zhou, J.1    Troyanskaya, O.G.2
  • 65
    • 84937840224 scopus 로고    scopus 로고
    • General stochastic networks for classification
    • Zöhrer, M. & Pernkopf, F. (2014) General stochastic networks for classification. NIPS'2014.
    • (2014) NIPS'2014
    • Zöhrer, M.1    Pernkopf, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.