-
3
-
-
0141518801
-
Learning iterative image reconstruction in the neural abstraction pyramid
-
Behnke, S. (2001) Learning iterative image reconstruction in the neural abstraction pyramid. Int. J. Comput. Intell. Appl., 1, 427-438.
-
(2001)
Int. J. Comput. Intell. Appl.
, vol.1
, pp. 427-438
-
-
Behnke, S.1
-
6
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y., Courville, A. & Vincent, P. (2013a) Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35, 1798-1828.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
7
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. (2007) Greedy layer-wise training of deep networks. NIPS'2006.
-
(2007)
NIPS'2006
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
8
-
-
84882266451
-
Better mixing via deep representations
-
Bengio, Y., Mesnil, G., Dauphin, Y. & Rifai, S. (2013b) Better mixing via deep representations. ICML'13.
-
(2013)
ICML'13
-
-
Bengio, Y.1
Mesnil, G.2
Dauphin, Y.3
Rifai, S.4
-
9
-
-
84893376517
-
-
Technical Report, arXiv:1306.1091
-
Bengio, Y., Thibodeau-Laufer, E., Alain, G. & Yosinski, J. (2014) Deep generative stochastic networks trainable by backprop. Technical Report, arXiv:1306.1091.
-
(2014)
Deep Generative Stochastic Networks Trainable by Backprop
-
-
Bengio, Y.1
Thibodeau-Laufer, E.2
Alain, G.3
Yosinski, J.4
-
10
-
-
84899017362
-
Generalized denoising auto-encoders as generative models
-
Bengio, Y., Yao, L., Alain, G. & Vincent, P. (2013c) Generalized denoising auto-encoders as generative models. NIPS'2013.
-
(2013)
NIPS'2013
-
-
Bengio, Y.1
Yao, L.2
Alain, G.3
Vincent, P.4
-
11
-
-
84898954948
-
-
Technical Report, U. Montreal, arXiv:1311.6184
-
Bengio, Y., Yao, L. & Cho, K. (2013d) Bounding the test log-likelihood of generative models. Technical Report, U. Montreal, arXiv:1311.6184.
-
(2013)
Bounding the Test Log-likelihood of Generative Models
-
-
Bengio, Y.1
Yao, L.2
Cho, K.3
-
12
-
-
84857819132
-
Theano: A CPU and GPU math expression compiler
-
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D. & Bengio, Y. (2010) Theano: A CPU and GPU math expression compiler. Proceedings of the Python for Scientific Computing Conference (SciPy).
-
(2010)
Proceedings of the Python for Scientific Computing Conference (SciPy)
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
13
-
-
84877727208
-
A semantic matching energy function for learning with multi-relational data
-
Bordes, A., Glorot, X., Weston, J. & Bengio, Y. (2013) A semantic matching energy function for learning with multi-relational data. Machine Learning: Special Issue on Learning Semantics.
-
(2013)
Machine Learning: Special Issue on Learning Semantics
-
-
Bordes, A.1
Glorot, X.2
Weston, J.3
Bengio, Y.4
-
15
-
-
79959650504
-
Quickly generating representative samples from an RBM-derived process
-
Breuleux, O., Bengio, Y. & Vincent, P. (2011) Quickly generating representative samples from an RBM-derived process. Neural Comput., 23, 2053-2073.
-
(2011)
Neural Comput.
, vol.23
, pp. 2053-2073
-
-
Breuleux, O.1
Bengio, Y.2
Vincent, P.3
-
17
-
-
0035885345
-
Comparison of perturbation bounds for the stationary distribution of a Markov chain
-
Cho, G. E., Meyer, C. D. & Meyer, C. D. (2000) Comparison of perturbation bounds for the stationary distribution of a Markov chain. Linear Algebra Appl., 335, 137-150.
-
(2000)
Linear Algebra Appl.
, vol.335
, pp. 137-150
-
-
Cho, G.E.1
Meyer, C.D.2
Meyer, C.D.3
-
18
-
-
84877799221
-
Enhanced gradient for training restricted Boltzmann machines
-
Cho, K. H., Raiko, T. & Ilin, A. (2013) Enhanced gradient for training restricted Boltzmann machines. Neural Comput., 25, 805-831.
-
(2013)
Neural Comput.
, vol.25
, pp. 805-831
-
-
Cho, K.H.1
Raiko, T.2
Ilin, A.3
-
19
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
Collobert, R. & Weston, J. (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. ICML'2008.
-
(2008)
ICML'2008
-
-
Collobert, R.1
Weston, J.2
-
20
-
-
85162069624
-
Phone recognition with the mean-covariance restricted Boltzmann machine
-
Dahl, G. E., Ranzato, M., Mohamed, A. & Hinton., G. E. (2010) Phone recognition with the mean-covariance restricted Boltzmann machine. NIPS'2010.
-
(2010)
NIPS'2010
-
-
Dahl, G.E.1
Ranzato, M.2
Mohamed, A.3
Hinton, G.E.4
-
21
-
-
0029372831
-
The Helmholtz machine
-
Dayan, P., Hinton, G. E., Neal, R. M. & Zemel, R. S. (1995) The Helmholtz machine. Neural Comput., 7, 889-904.
-
(1995)
Neural Comput.
, vol.7
, pp. 889-904
-
-
Dayan, P.1
Hinton, G.E.2
Neal, R.M.3
Zemel, R.S.4
-
22
-
-
79959842828
-
Binary coding of speech spectrograms using a deep auto-encoder
-
Chiba, Japan: Makuhari
-
Deng, L., Seltzer, M., Yu, D., Acero, A., Mohamed, A. & Hinton, G. (2010) Binary coding of speech spectrograms using a deep auto-encoder. Interspeech 2010. Chiba, Japan: Makuhari.
-
(2010)
Interspeech 2010
-
-
Deng, L.1
Seltzer, M.2
Yu, D.3
Acero, A.4
Mohamed, A.5
Hinton, G.6
-
25
-
-
84944735469
-
-
Book in preparation for MIT Press, Last Accessed March 1, 2015.
-
Goodfellow, I. J., Courville, A. & Bengio, Y. (2015) Deep Learning. Book in preparation for MIT Press. http://www.deeplearningbook.org/. Last Accessed March 1, 2015.
-
(2015)
Deep Learning
-
-
Goodfellow, I.J.1
Courville, A.2
Bengio, Y.3
-
26
-
-
84898988737
-
Multi-prediction deep Boltzmann machines
-
Goodfellow, I. J., Mirza, M., Courville, A. & Bengio, Y. (2013) Multi-prediction deep Boltzmann machines. NIPS'2013.
-
(2013)
NIPS'2013
-
-
Goodfellow, I.J.1
Mirza, M.2
Courville, A.3
Bengio, Y.4
-
27
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. & Bengio, Y. (2014) Generative adversarial nets. Advances in Neural Information Processing Systems. pp. 2672-2680.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
28
-
-
84919796355
-
Deep autoregressive networks
-
Gregor, K., Danihelka, I., Mnih, A., Blundell, C. & Wierstra, D. (2014) Deep autoregressive networks. International Conference on Machine Learning (ICML'2014).
-
(2014)
International Conference on Machine Learning (ICML'2014)
-
-
Gregor, K.1
Danihelka, I.2
Mnih, A.3
Blundell, C.4
Wierstra, D.5
-
29
-
-
84857889007
-
Noise-contrastive estimation: A new estimation principle for unnormalized statistical models
-
Gutmann, M. & Hyvarinen, A. (2010) Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. AISTATS'2010.
-
(2010)
AISTATS'2010
-
-
Gutmann, M.1
Hyvarinen, A.2
-
30
-
-
0002123103
-
Dependency networks for inference, collaborative filtering, and data visualization
-
Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R. & Kadie, C. (2000) Dependency networks for inference, collaborative filtering, and data visualization. J. Mach. Learn. Res., 1, 49-75.
-
(2000)
J. Mach. Learn. Res.
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.M.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
31
-
-
0242564704
-
Products of experts
-
Hinton, G. E. (1999) Products of experts. ICANN'1999.
-
(1999)
ICANN'1999
-
-
Hinton, G.E.1
-
33
-
-
0029652445
-
The wake-sleep algorithm for unsupervised neural networks
-
Hinton, G. E., Dayan, P., Frey, B. J. & Neal, R. M. (1995) The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1558-1561.
-
(1995)
Science
, vol.268
, pp. 1558-1561
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
34
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S. & Teh, Y. W. (2006) A fast learning algorithm for deep belief nets. Neural Comput., 18, 1527-1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
35
-
-
84867720412
-
-
Technical Report, arXiv:1207.0580
-
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2012) Improving neural networks by preventing co-adaptation of feature detectors. Technical Report, arXiv:1207.0580.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
36
-
-
33749425692
-
Consistency of pseudolikelihood estimation of fully visible Boltzmann machines
-
Hyvärinen, A. (2006) Consistency of pseudolikelihood estimation of fully visible Boltzmann machines. Neural Comput, 18, 2283-2292.
-
(2006)
Neural Comput
, vol.18
, pp. 2283-2292
-
-
Hyvärinen, A.1
-
39
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I. & Hinton, G. (2012) ImageNet classification with deep convolutional neural networks. NIPS'2012.
-
(2012)
NIPS'2012
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
40
-
-
84862524901
-
The Neural Autoregressive Distribution Estimator
-
Larochelle, H. & Murray, I. (2011) The Neural Autoregressive Distribution Estimator. AISTATS'2011.
-
(2011)
AISTATS'2011
-
-
Larochelle, H.1
Murray, I.2
-
41
-
-
84864036295
-
Efficient sparse coding algorithms
-
Cambridge, MA: MIT Press
-
Lee, H., Battle, A., Raina, R. & Ng, A. (2007) Efficient sparse coding algorithms. NIPS'06. Cambridge, MA: MIT Press, pp. 801-808.
-
(2007)
NIPS'06
, pp. 801-808
-
-
Lee, H.1
Battle, A.2
Raina, R.3
Ng, A.4
-
42
-
-
84887360102
-
Exploring compositional high-order pattern potentials for structured output learning
-
Li, Y., Tarlow, D. & Zemel, R. (2013) Exploring compositional high-order pattern potentials for structured output learning. CVPR'2013.
-
(2013)
CVPR'2013
-
-
Li, Y.1
Tarlow, D.2
Zemel, R.3
-
43
-
-
84883151355
-
Texture modeling with convolutional spike-and-slab RBMs and deep extensions
-
Luo, H., Carrier, P. L., Courville, A. & Bengio, Y. (2013) Texture modeling with convolutional spike-and-slab RBMs and deep extensions. AISTATS'2013.
-
(2013)
AISTATS'2013
-
-
Luo, H.1
Carrier, P.L.2
Courville, A.3
Bengio, Y.4
-
44
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Mnih, A. & Gregor, K. (2014) Neural variational inference and learning in belief networks. ICML'2014.
-
(2014)
ICML'2014
-
-
Mnih, A.1
Gregor, K.2
-
45
-
-
84872571941
-
Deep Boltzmann machines and the centering trick
-
Neural Networks: Tricks of the Trade, (G. Montavon, G. Orr & K.-R. Müller eds)., Berlin: Springer
-
Montavon, G. & Muller, K.-R. (2012) Deep Boltzmann machines and the centering trick. Neural Networks: Tricks of the Trade (G. Montavon, G. Orr & K.-R. Müller eds). Lecture Notes in Computer Science, vol. 7700. Berlin: Springer, pp. 621-637.
-
(2012)
Lecture Notes in Computer Science
, vol.7700
, pp. 621-637
-
-
Montavon, G.1
Muller, K.-R.2
-
47
-
-
85071693559
-
-
Technical Report, U. Montreal, arXiv:1312.5578
-
Ozair, S., Yao, L. & Bengio, Y. (2014) Multimodal transitions for generative stochastic networks. Technical Report, U. Montreal, arXiv:1312.5578.
-
(2014)
Multimodal Transitions for Generative Stochastic Networks
-
-
Ozair, S.1
Yao, L.2
Bengio, Y.3
-
49
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
Ranzato, M., Poultney, C., Chopra, S. & LeCun, Y. (2007) Efficient learning of sparse representations with an energy-based model. NIPS'2006.
-
(2007)
NIPS'2006
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
LeCun, Y.4
-
51
-
-
84867136416
-
A generative process for sampling contractive autoencoders
-
Rifai, S., Bengio, Y., Dauphin, Y. & Vincent, P. (2012) A generative process for sampling contractive autoencoders. ICML'12.
-
(2012)
ICML'12
-
-
Rifai, S.1
Bengio, Y.2
Dauphin, Y.3
Vincent, P.4
-
54
-
-
0001296683
-
Perturbation theory and finite Markov chains
-
Schweitzer, P. J. (1968) Perturbation theory and finite Markov chains. J. Appl. Probab., 5, 401-413.
-
(1968)
J. Appl. Probab.
, vol.5
, pp. 401-413
-
-
Schweitzer, P.J.1
-
55
-
-
84865801985
-
Conversational speech transcription using context-dependent deep neural networks
-
Seide, F., Li, G. & Yu, D. (2011) Conversational speech transcription using context-dependent deep neural networks. Interspeech 2011, pp. 437-440.
-
(2011)
Interspeech 2011
, pp. 437-440
-
-
Seide, F.1
Li, G.2
Yu, D.3
-
56
-
-
0000938157
-
Learning continuous attractors in recurrent networks
-
Cambridge, MA: MIT Press
-
Seung, S. H. (1998) Learning continuous attractors in recurrent networks. NIPS'97. Cambridge, MA: MIT Press, pp. 654-660.
-
(1998)
NIPS'97
, pp. 654-660
-
-
Seung, S.H.1
-
57
-
-
85018934798
-
-
arXiv:1503.03585
-
Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N. & Ganguli, S. (2015) Deep unsupervised learning using nonequilibrium thermodynamics. arXiv:1503.03585.
-
(2015)
Deep Unsupervised Learning Using Nonequilibrium Thermodynamics
-
-
Sohl-Dickstein, J.1
Weiss, E.A.2
Maheswaranathan, N.3
Ganguli, S.4
-
58
-
-
56449086223
-
Training restricted Boltzmann machines using approximations to the likelihood gradient
-
(W. W. Cohen, A. McCallum & S. T. Roweis eds). New York, NY, USA: ACM
-
Tieleman, T. (2008) Training restricted Boltzmann machines using approximations to the likelihood gradient. ICML 2008 (W. W. Cohen, A. McCallum & S. T. Roweis eds). New York, NY, USA: ACM, pp. 1064-1071.
-
(2008)
ICML 2008
, pp. 1064-1071
-
-
Tieleman, T.1
-
59
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. (2008) Extracting and composing robust features with denoising autoencoders. ICML 2008.
-
(2008)
ICML 2008
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
60
-
-
0000337576
-
Simple statistical gradient-following algorithms connectionist reinforcement learning
-
Williams, R. J. (1992) Simple statistical gradient-following algorithms connectionist reinforcement learning. Mach. Learn., 8, 229-256.
-
(1992)
Mach. Learn.
, vol.8
, pp. 229-256
-
-
Williams, R.J.1
-
61
-
-
85071678978
-
-
Technical Report, U. Montreal, arXiv:1409.0585
-
Yao, L., Ozair, S., Cho, K. & Bengio, Y. (2014) On the equivalence between deep nade and generative stochastic networks. Technical Report, U. Montreal, arXiv:1409.0585.
-
(2014)
On the Equivalence between Deep Nade and Generative Stochastic Networks
-
-
Yao, L.1
Ozair, S.2
Cho, K.3
Bengio, Y.4
-
62
-
-
84937508363
-
How transferable are features in deep neural networks?
-
Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. (2014) How transferable are features in deep neural networks? NIPS'2014.
-
(2014)
NIPS'2014
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
63
-
-
33644756784
-
On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates
-
Younes, L. (1998) On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics and Stochastics Models, pp. 177-228.
-
(1998)
Stochastics and Stochastics Models
, pp. 177-228
-
-
Younes, L.1
-
64
-
-
84919913066
-
Deep supervised and convolutional generative stochastic network for protein secondary structure prediction
-
Zhou, J. & Troyanskaya, O. G. (2014) Deep supervised and convolutional generative stochastic network for protein secondary structure prediction. ICML'2014.
-
(2014)
ICML'2014
-
-
Zhou, J.1
Troyanskaya, O.G.2
-
65
-
-
84937840224
-
General stochastic networks for classification
-
Zöhrer, M. & Pernkopf, F. (2014) General stochastic networks for classification. NIPS'2014.
-
(2014)
NIPS'2014
-
-
Zöhrer, M.1
Pernkopf, F.2
|