메뉴 건너뛰기




Volumn , Issue , 2013, Pages

What regularized auto-encoders learn from the data generating distribution

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; MAXIMUM LIKELIHOOD;

EID: 85083953791     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (28)

References (28)
  • 1
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Also published as a book. Now Publishers, 2009
    • Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2 (1):1–127, 2009. Also published as a book. Now Publishers, 2009.
    • (2009) Foundations and Trends in Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 2
    • 84876218939 scopus 로고    scopus 로고
    • On the expressive power of deep architectures
    • Yoshua Bengio and Olivier Delalleau. On the expressive power of deep architectures. In ALT’2011, 2011.
    • (2011) ALT’2011
    • Bengio, Y.1    Delalleau, O.2
  • 3
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • MIT Press
    • Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of deep networks. In NIPS 19, pages 153–160. MIT Press, 2007.
    • (2007) NIPS , vol.19 , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 8
    • 48649110141 scopus 로고    scopus 로고
    • Technical Report CS2008-0923, UCSD, B. Dacorogna. Introduction to the Calculus of Variations. World Scientific Publishing Company, 2004
    • Lawrence Cayton. Algorithms for manifold learning. Technical Report CS2008-0923, UCSD, 2005. B. Dacorogna. Introduction to the Calculus of Variations. World Scientific Publishing Company, 2004.
    • (2005) Algorithms for Manifold Learning
    • Cayton, L.1
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527–1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 11
    • 22044434800 scopus 로고    scopus 로고
    • Estimation of non-normalized statistical models using score matching
    • Aapo Hyvärinen. Estimation of non-normalized statistical models using score matching. Journal of Machine Learning Research, 6:695–709, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 695-709
    • Hyvärinen, A.1
  • 13
    • 78149296699 scopus 로고    scopus 로고
    • Natural image denoising with convolutional networks
    • Viren Jain and Sebastian H. Seung. Natural image denoising with convolutional networks. In NIPS’08, pages 769–776, 2008.
    • (2008) NIPS’08 , pp. 769-776
    • Jain, V.1    Seung, S.H.2
  • 15
    • 85162419825 scopus 로고    scopus 로고
    • Regularized estimation of image statistics by score matching
    • J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors
    • Diederik Kingma and Yann LeCun. Regularized estimation of image statistics by score matching. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1126–1134, 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 1126-1134
    • Kingma, D.1    LeCun, Y.2
  • 16
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Léon Bottou and Michael Littman, editors, ACM, Montreal (Qc), Canada
    • Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Léon Bottou and Michael Littman, editors, ICML 2009. ACM, Montreal (Qc), Canada, 2009.
    • (2009) ICML 2009
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 17
    • 85162064389 scopus 로고    scopus 로고
    • Sample complexity of testing the manifold hypothesis
    • Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the manifold hypothesis. In NIPS’2010. 2010.
    • (2010) NIPS’2010
    • Narayanan, H.1    Mitter, S.2
  • 18
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • December
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Research, 37:3311–3325, December 1997. URL http://view.ncbi.nlm.nih.gov/pubmed/9425546.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 19
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • MIT Press
    • MarcʹAurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS’06, pages 1137–1144. MIT Press, 2007.
    • (2007) NIPS’06 , pp. 1137-1144
    • Ranzato, M.A.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 20
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • Cambridge, MA, MIT Press
    • MarcʹAurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse feature learning for deep belief networks. In NIPS’07, pages 1185–1192, Cambridge, MA, 2008. MIT Press.
    • (2008) NIPS’07 , pp. 1185-1192
    • Ranzato, M.A.1    Boureau, Y.-L.2    LeCun, Y.3
  • 22
    • 80053460450 scopus 로고    scopus 로고
    • Contractive autoencoders: Explicit invariance during feature extraction
    • Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive autoencoders: Explicit invariance during feature extraction. In ICML’11, 2011b.
    • (2011) ICML’11
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Glorot, X.4    Bengio, Y.5
  • 23
    • 80053460450 scopus 로고    scopus 로고
    • Contractive autoencoders: Explicit invariance during feature extraction
    • Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive autoencoders: Explicit invariance during feature extraction. In ICML’2011, 2011c.
    • (2011) ICML’2011
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Glorot, X.4    Bengio, Y.5
  • 24
    • 84867136416 scopus 로고    scopus 로고
    • A generative process for sampling contractive auto-encoders
    • Salah Rifai, Yoshua Bengio, Yann Dauphin, and Pascal Vincent. A generative process for sampling contractive auto-encoders. In ICML’12, 2012.
    • (2012) ICML’12
    • Rifai, S.1    Bengio, Y.2    Dauphin, Y.3    Vincent, P.4
  • 27
    • 79959575293 scopus 로고    scopus 로고
    • A connection between score matching and denoising autoencoders
    • Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 23(7):1661–1674, 2011.
    • (2011) Neural Computation , vol.23 , Issue.7 , pp. 1661-1674
    • Vincent, P.1
  • 28
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • ACM
    • Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML’08, pages 1096–1103. ACM, 2008.
    • (2008) ICML’08 , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.