메뉴 건너뛰기




Volumn 5, Issue 2, 2016, Pages 105-133

Deep Haar scattering networks

Author keywords

Classification; Deep learning; Graphs; Haar wavelet; Images; Neural network; Scattering transform

Indexed keywords


EID: 85032765704     PISSN: None     EISSN: 20498772     Source Type: Journal    
DOI: 10.1093/imaiai/iaw007     Document Type: Article
Times cited : (28)

References (45)
  • 6
    • 84879877798 scopus 로고    scopus 로고
    • Invariant scattering convolution networks
    • Bruna, J. & Mallat, S. (2013) Invariant scattering convolution networks. IEEE Trans. PAMI, 35, 1872-1886.
    • (2013) IEEE Trans. PAMI , vol.35 , pp. 1872-1886
    • Bruna, J.1    Mallat, S.2
  • 9
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen, S., Cowan, C. F. & Grant, P. M. (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw., 2, 302-309.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.2    Grant, P.M.3
  • 10
    • 84864456939 scopus 로고    scopus 로고
    • Harmonic analysis of digital data bases
    • Berlin, Heidelberg, New York: Springer
    • Coifman, R. & Gavish, M. (2011) Harmonic analysis of digital data bases. Wavelets and Multiscale analysis. Berlin, Heidelberg, New York: Springer, pp. 161-197.
    • (2011) Wavelets and Multiscale Analysis , pp. 161-197
    • Coifman, R.1    Gavish, M.2
  • 12
    • 0000186542 scopus 로고
    • Wavelet analysis and signal processing
    • (Ruskai ed.). Boston: Jones and Bartlett
    • Coifman, C., Meyer, Y. & Wickerhauser, M. (1992) Wavelet analysis and signal processing. Wavelets and Their Applications (Ruskai ed.). Boston: Jones and Bartlett, pp. 153-178.
    • (1992) Wavelets and Their Applications , pp. 153-178
    • Coifman, C.1    Meyer, Y.2    Wickerhauser, M.3
  • 13
    • 0000927535 scopus 로고
    • Paths, trees, and flowers
    • Edmonds, J. (1965) Paths, trees, and flowers. Can. J. Math., 17, 449-467.
    • (1965) Can. J. Math. , vol.17 , pp. 449-467
    • Edmonds, J.1
  • 15
    • 0016943409 scopus 로고
    • An efficient implementation of Edmonds' algorithm for maximum matching on graphs
    • Gabow, H. N. (1976) An efficient implementation of Edmonds' algorithm for maximum matching on graphs. J. ACM, 23, 221-234.
    • (1976) J. ACM , vol.23 , pp. 221-234
    • Gabow, H.N.1
  • 20
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G., Osindero, S. & Teh, Y.-W. (2006) A fast learning algorithm for deep belief nets. Neural Comput., 18, 1527-1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 21
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. & Salakhutdinov, R. R. (2006) Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.R.2
  • 23
    • 84866666373 scopus 로고    scopus 로고
    • Beyond spatial pyramids: Receptive field learning for pooled image features
    • Providence, RI
    • Jia, Y., Huang, C. & Darrell, T. (2012) Beyond spatial pyramids: Receptive field learning for pooled image features. CVPR, 2012 IEEE Conference on, Providence, RI, pp. 3370-3377.
    • (2012) CVPR, 2012 IEEE Conference on , pp. 3370-3377
    • Jia, Y.1    Huang, C.2    Darrell, T.3
  • 24
    • 80053149708 scopus 로고    scopus 로고
    • Randomized approximate nearest neighbors algorithm
    • Jones, P. W., Osipov, A. & Rokhlin, V. (2011) Randomized approximate nearest neighbors algorithm. Proc. Natl. Acad. Sci., 108, 15679-15686.
    • (2011) Proc. Natl. Acad. Sci. , vol.108 , pp. 15679-15686
    • Jones, P.W.1    Osipov, A.2    Rokhlin, V.3
  • 25
    • 56449124824 scopus 로고    scopus 로고
    • Simple method for highperformance digit recognition based on sparse coding
    • Labusch, K., Barth, E. & Martinetz, T. (2008) Simple method for highperformance digit recognition based on sparse coding. IEEE TNN, 19, 1985-1989.
    • (2008) IEEE TNN , vol.19 , pp. 1985-1989
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 30
    • 84864324516 scopus 로고    scopus 로고
    • Group invariant scattering
    • Mallat, S. (2012) Group invariant scattering. Commun. Pure Appl. Math., 65, 1331-1398.
    • (2012) Commun. Pure Appl. Math. , vol.65 , pp. 1331-1398
    • Mallat, S.1
  • 31
    • 84960344531 scopus 로고    scopus 로고
    • Understanding deep convolutional networks
    • Mallat, S. (2016) Understanding deep convolutional networks. Philosphical Trans. A, 374, 2065.
    • (2016) Philosphical Trans. A , vol.374 , pp. 2065
    • Mallat, S.1
  • 33
    • 0000520690 scopus 로고
    • Some deviation inequalities
    • Maurey, B. (1991) Some deviation inequalities. Geom. Funct. Anal., 1, 188-197.
    • (1991) Geom. Funct. Anal. , vol.1 , pp. 188-197
    • Maurey, B.1
  • 36
    • 0001357908 scopus 로고
    • Probabilistic Methods in the Geometry of Banach Spaces
    • Springer: Berlin, Heidelberg
    • Pisier, G. (1985) Probabilistic Methods in the Geometry of Banach Spaces. Springer Lecture Notes in Math., vol. 1206. Springer: Berlin, Heidelberg. pp. 167-241.
    • (1985) Springer Lecture Notes in Math , vol.1206 , pp. 167-241
    • Pisier, G.1
  • 37
    • 84957061291 scopus 로고    scopus 로고
    • Linear Time 12 -Approximation Algorithm for Maximum Weighted Matching in General Graphs
    • Trier, Germany, Springer: Berlin Heidelberg
    • Preis, R. (1999) Linear Time 12 -Approximation Algorithm for Maximum Weighted Matching in General Graphs, STACS99: 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier, Germany, Springer: Berlin Heidelberg. pp. 259-269.
    • (1999) STACS99: 16th Annual Symposium on Theoretical Aspects of Computer Science , pp. 259-269
    • Preis, R.1
  • 41
    • 84928170467 scopus 로고    scopus 로고
    • Learning deep generative models
    • Salakhutdinov, R. (2015) Learning deep generative models. Annu. Rev. Stat. Appl., 2, 361-385.
    • (2015) Annu. Rev. Stat. Appl. , vol.2 , pp. 361-385
    • Salakhutdinov, R.1
  • 42
    • 85032751310 scopus 로고    scopus 로고
    • The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
    • Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A. & Vandergheynst, P. (2013) The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag., 30, 83-98.
    • (2013) IEEE Signal Process. Mag. , vol.30 , pp. 83-98
    • Shuman, D.I.1    Narang, S.K.2    Frossard, P.3    Ortega, A.4    Vandergheynst, P.5
  • 43
    • 30844434804 scopus 로고    scopus 로고
    • Diffusion-driven multiscale analysis on manifolds and graphs: Top-down and bottom-up constructions
    • International Society for Optics and Photonics
    • Szlam, A. D., Maggioni, M., Coifman, R. & Bremer Jr, J. C. (2005) Diffusion-driven multiscale analysis on manifolds and graphs: Top-down and bottom-up constructions. Optics & Photonics 2005. International Society for Optics and Photonics, pp. 59141D.
    • (2005) Optics & Photonics 2005 , pp. 59141D
    • Szlam, A.D.1    Maggioni, M.2    Coifman, R.3    Bremer, J.C.4
  • 45
    • 84865768819 scopus 로고    scopus 로고
    • Deep convex net: A scalable architecture for speech pattern classification
    • Yu, D. & Deng, L. (2011) Deep convex net: A scalable architecture for speech pattern classification. Proceedings of INTERSPEECH, pp. 2285-2288.
    • (2011) Proceedings of INTERSPEECH , pp. 2285-2288
    • Yu, D.1    Deng, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.