-
1
-
-
0037417220
-
Apoptosis and caspases in neurodegenerative diseases
-
Friedlander RM. Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 2003; 348: 1365–1375.
-
(2003)
N Engl J Med
, vol.348
, pp. 1365-1375
-
-
Friedlander, R.M.1
-
2
-
-
0034329742
-
Apoptosis in neurodegenerative disorders
-
Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000; 1: 120–130.
-
(2000)
Nat Rev Mol Cell Biol
, vol.1
, pp. 120-130
-
-
Mattson, M.P.1
-
3
-
-
0038205745
-
Targeting programmed cell death in neurodegenerative diseases
-
Vila M, Przedborski S. Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 2003; 4: 365–375.
-
(2003)
Nat Rev Neurosci
, vol.4
, pp. 365-375
-
-
Vila, M.1
Przedborski, S.2
-
4
-
-
33947714475
-
Caspase inhibitors promote alternative cell death pathways
-
Vandenabeele P, Vanden Berghe T, Festjens N. Caspase inhibitors promote alternative cell death pathways. Sci STKE 2006; 2006: pe44.
-
(2006)
Sci STKE
, vol.2006
-
-
Vandenabeele, P.1
Vanden Berghe, T.2
Festjens, N.3
-
5
-
-
10344262564
-
Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes
-
Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004; 6: 1221–1228.
-
(2004)
Nat Cell Biol
, vol.6
, pp. 1221-1228
-
-
Shimizu, S.1
Kanaseki, T.2
Mizushima, N.3
Mizuta, T.4
Arakawa-Kobayashi, S.5
Thompson, C.B.6
-
6
-
-
84894550453
-
Regulated necrosis: The expanding network of non-apoptotic cell death pathways
-
Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 2014; 15: 135–147.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 135-147
-
-
Vanden Berghe, T.1
Linkermann, A.2
Jouan-Lanhouet, S.3
Walczak, H.4
Vandenabeele, P.5
-
7
-
-
33644840693
-
Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury
-
Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005; 1: 112–119.
-
(2005)
Nat Chem Biol
, vol.1
, pp. 112-119
-
-
Degterev, A.1
Huang, Z.2
Boyce, M.3
Li, Y.4
Jagtap, P.5
Mizushima, N.6
-
8
-
-
25844457686
-
Structure-activity relationship study of novel necroptosis inhibitors
-
Teng X, Degterev A, Jagtap P, Xing X, Choi S, Denu R et al. Structure-activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett 2005; 15: 5039–5044.
-
(2005)
Bioorg Med Chem Lett
, vol.15
, pp. 5039-5044
-
-
Teng, X.1
Degterev, A.2
Jagtap, P.3
Xing, X.4
Choi, S.5
Denu, R.6
-
9
-
-
84861541814
-
Ferroptosis: An iron-dependent form of nonapoptotic cell death
-
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149: 1060–1072.
-
(2012)
Cell
, vol.149
, pp. 1060-1072
-
-
Dixon, S.J.1
Lemberg, K.M.2
Lamprecht, M.R.3
Skouta, R.4
Zaitsev, E.M.5
Gleason, C.E.6
-
10
-
-
84957429081
-
Ferroptosis: Process and function
-
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al. Ferroptosis: process and function. Cell Death Differ 2016; 23: 369–379.
-
(2016)
Cell Death Differ
, vol.23
, pp. 369-379
-
-
Xie, Y.1
Hou, W.2
Song, X.3
Yu, Y.4
Huang, J.5
Sun, X.6
-
11
-
-
84962637563
-
Mechanisms of ferroptosis
-
Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci 2016; 73: 2195–2209.
-
(2016)
Cell Mol Life Sci
, vol.73
, pp. 2195-2209
-
-
Cao, J.Y.1
Dixon, S.J.2
-
12
-
-
84940956493
-
Parkinson's disease
-
Kalia LV, Lang AE. Parkinson's disease. Lancet 2015; 386: 896–912.
-
(2015)
Lancet
, vol.386
, pp. 896-912
-
-
Kalia, L.V.1
Lang, A.E.2
-
13
-
-
84968764106
-
Understanding dopaminergic cell death pathways in Parkinson disease
-
Michel PP, Hirsch EC, Hunot S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 2016; 90: 675–691.
-
(2016)
Neuron
, vol.90
, pp. 675-691
-
-
Michel, P.P.1
Hirsch, E.C.2
Hunot, S.3
-
14
-
-
55849122639
-
Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis
-
Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 2008; 4: 600–609.
-
(2008)
Nat Clin Pract Neurol
, vol.4
, pp. 600-609
-
-
Henchcliffe, C.1
Beal, M.F.2
-
15
-
-
70350759686
-
Pathogenesis of familial Parkinson's disease: New insights based on monogenic forms of Parkinson's disease
-
Hatano T, Kubo S, Sato S, Hattori N. Pathogenesis of familial Parkinson's disease: new insights based on monogenic forms of Parkinson's disease. J Neurochem 2009; 111: 1075–1093.
-
(2009)
J Neurochem
, vol.111
, pp. 1075-1093
-
-
Hatano, T.1
Kubo, S.2
Sato, S.3
Hattori, N.4
-
16
-
-
84961839432
-
Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults
-
Hasegawa K, Yasuda T, Shiraishi C, Fujiwara K, Przedborski S, Mochizuki H et al. Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults. Nat Commun 2016; 7: 10943.
-
(2016)
Nat Commun
, vol.7
-
-
Hasegawa, K.1
Yasuda, T.2
Shiraishi, C.3
Fujiwara, K.4
Przedborski, S.5
Mochizuki, H.6
-
17
-
-
0021089452
-
Aetiology of Parkinson’s disease
-
Calne DB, Langston J. Aetiology of Parkinson’s disease.Lancet 1983; 322: 1457–1459.
-
(1983)
Lancet
, vol.322
, pp. 1457-1459
-
-
Calne, D.B.1
Langston, J.2
-
18
-
-
0141741347
-
Parkinson's disease: Mechanisms and models
-
Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron 2003; 39: 889–909.
-
(2003)
Neuron
, vol.39
, pp. 889-909
-
-
Dauer, W.1
Przedborski, S.2
-
19
-
-
84860615324
-
Neurotoxin-based models of Parkinson's disease
-
Bove J, Perier C. Neurotoxin-based models of Parkinson's disease. Neuroscience 2012; 211: 51–76.
-
(2012)
Neuroscience
, vol.211
, pp. 51-76
-
-
Bove, J.1
Perier, C.2
-
20
-
-
84884901192
-
Glutathione metabolism and Parkinson's disease
-
Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson's disease. Free Radic Biol Med 2013; 62: 13–25.
-
(2013)
Free Radic Biol Med
, vol.62
, pp. 13-25
-
-
Smeyne, M.1
Smeyne, R.J.2
-
21
-
-
0033681149
-
Chronic systemic pesticide exposure reproduces features of Parkinson's disease
-
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000; 3: 1301–1306.
-
(2000)
Nat Neurosci
, vol.3
, pp. 1301-1306
-
-
Betarbet, R.1
Sherer, T.B.2
Mackenzie, G.3
Garcia-Osuna, M.4
Panov, A.V.5
Greenamyre, J.T.6
-
22
-
-
84975751684
-
Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: Relevance to Parkinson's disease
-
Hartley A, Stone JM, Heron C, Cooper JM, Schapira AH. Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson's disease. J Neurochem 1994; 63: 1987–1990.
-
(1994)
J Neurochem
, vol.63
, pp. 1987-1990
-
-
Hartley, A.1
Stone, J.M.2
Heron, C.3
Cooper, J.M.4
Schapira, A.H.5
-
23
-
-
0030249597
-
Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity
-
Trimmer PA, Smith TS, Jung AB, Bennett JP Jr. Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration 1996; 5: 233–239.
-
(1996)
Neurodegeneration
, vol.5
, pp. 233-239
-
-
Trimmer, P.A.1
Smith, T.S.2
Jung, A.B.3
Bennett, J.P.4
-
24
-
-
84983670770
-
Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model
-
Qi X, Davis B, Chiang YH, Filichia E, Barnett A, Greig NH et al. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model. J Neurochem 2016; 138: 746–757.
-
(2016)
J Neurochem
, vol.138
, pp. 746-757
-
-
Qi, X.1
Davis, B.2
Chiang, Y.H.3
Filichia, E.4
Barnett, A.5
Greig, N.H.6
-
25
-
-
0038790330
-
Caspase-dependent and-independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment
-
Han BS, Hong HS, Choi WS, Markelonis GJ, Oh TH, Oh YJ. Caspase-dependent and-independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment. J Neurosci 2003; 23: 5069–5078.
-
(2003)
J Neurosci
, vol.23
, pp. 5069-5078
-
-
Han, B.S.1
Hong, H.S.2
Choi, W.S.3
Markelonis, G.J.4
Oh, T.H.5
Oh, Y.J.6
-
27
-
-
0032846284
-
Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y
-
Encinas M, Iglesias M, Llecha N, Comella JX. Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem 1999; 73: 1409–1421.
-
(1999)
J Neurochem
, vol.73
, pp. 1409-1421
-
-
Encinas, M.1
Iglesias, M.2
Llecha, N.3
Comella, J.X.4
-
28
-
-
0033844835
-
Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells
-
Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Cena V et al. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 2000; 75: 991–1003.
-
(2000)
J Neurochem
, vol.75
, pp. 991-1003
-
-
Encinas, M.1
Iglesias, M.2
Liu, Y.3
Wang, H.4
Muhaisen, A.5
Cena, V.6
-
29
-
-
84908003302
-
BDNF and the maturation of posttranscriptional regulatory networks in human SH-SY5Y neuroblast differentiation
-
Goldie BJ, Barnett MM, Cairns MJ. BDNF and the maturation of posttranscriptional regulatory networks in human SH-SY5Y neuroblast differentiation. Front Cell Neurosci 2014; 8: 325.
-
(2014)
Front Cell Neurosci
, vol.8
, pp. 325
-
-
Goldie, B.J.1
Barnett, M.M.2
Cairns, M.J.3
-
30
-
-
84925286831
-
Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
-
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014; 16: 1180–1191.
-
(2014)
Nat Cell Biol
, vol.16
, pp. 1180-1191
-
-
Friedmann Angeli, J.P.1
Schneider, M.2
Proneth, B.3
Tyurina, Y.Y.4
Tyurin, V.A.5
Hammond, V.J.6
-
31
-
-
84930149514
-
Role of RIP1 in physiological enterocyte turnover in mouse small intestine via nonapoptotic death
-
Matsuoka Y, Tsujimoto Y. Role of RIP1 in physiological enterocyte turnover in mouse small intestine via nonapoptotic death. Genes Cells 2015; 20: 11–28.
-
(2015)
Genes Cells
, vol.20
, pp. 11-28
-
-
Matsuoka, Y.1
Tsujimoto, Y.2
-
32
-
-
80051481307
-
RIP1-dependent and independent effects of necrostatin-1 in necrosis and T cell activation
-
Cho Y, McQuade T, Zhang H, Zhang J, Chan FK. RIP1-dependent and independent effects of necrostatin-1 in necrosis and T cell activation. PLoS ONE 2011; 6: e23209.
-
(2011)
Plos ONE
, vol.6
-
-
Cho, Y.1
McQuade, T.2
Zhang, H.3
Zhang, J.4
Chan, F.K.5
-
33
-
-
33646428633
-
3,3'-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells
-
Gong Y, Sohn H, Xue L, Firestone GL, Bjeldanes LF. 3,3'-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells. Cancer Res 2006; 66: 4880–4887.
-
(2006)
Cancer Res
, vol.66
, pp. 4880-4887
-
-
Gong, Y.1
Sohn, H.2
Xue, L.3
Firestone, G.L.4
Bjeldanes, L.F.5
-
34
-
-
0344553280
-
Overview of recurrent respiratory papillomatosis
-
Wiatrak BJ. Overview of recurrent respiratory papillomatosis. Curr Opin Otolaryngol Head Neck Surg 2003; 11: 433–441.
-
(2003)
Curr Opin Otolaryngol Head Neck Surg
, vol.11
, pp. 433-441
-
-
Wiatrak, B.J.1
-
35
-
-
42249102086
-
Identification of RIP1 kinase as a specific cellular target of necrostatins
-
Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008; 4: 313–321.
-
(2008)
Nat Chem Biol
, vol.4
, pp. 313-321
-
-
Degterev, A.1
Hitomi, J.2
Germscheid, M.3
Ch'en, I.L.4
Korkina, O.5
Teng, X.6
-
36
-
-
84937410053
-
24(S)-Hydroxycholesterol induces RIPK1-dependent but MLKL-independent cell death in the absence of caspase-8
-
Vo DK, Urano Y, Takabe W, Saito Y, Noguchi N. 24(S)-Hydroxycholesterol induces RIPK1-dependent but MLKL-independent cell death in the absence of caspase-8. Steroids 2015; 99(Part B): 230–237.
-
(2015)
Steroids
, vol.99
, pp. 230-237
-
-
Vo, D.K.1
Urano, Y.2
Takabe, W.3
Saito, Y.4
Noguchi, N.5
-
38
-
-
84885399978
-
P53 regulates a non-apoptotic death induced by ROS
-
Montero J, Dutta C, van Bodegom D, Weinstock D, Letai A. P53 regulates a non-apoptotic death induced by ROS. Cell Death Differ 2013; 20: 1465–1474.
-
(2013)
Cell Death Differ
, vol.20
, pp. 1465-1474
-
-
Montero, J.1
Dutta, C.2
Van Bodegom, D.3
Weinstock, D.4
Letai, A.5
-
40
-
-
15844407874
-
Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death
-
Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005; 434: 652–658.
-
(2005)
Nature
, vol.434
, pp. 652-658
-
-
Nakagawa, T.1
Shimizu, S.2
Watanabe, T.3
Yamaguchi, O.4
Otsu, K.5
Yamagata, H.6
-
41
-
-
0024360271
-
Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria
-
Broekemeier KM, Dempsey ME, Pfeiffer DR. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 1989; 264: 7826–7830.
-
(1989)
J Biol Chem
, vol.264
, pp. 7826-7830
-
-
Broekemeier, K.M.1
Dempsey, M.E.2
Pfeiffer, D.R.3
-
42
-
-
33747886055
-
Nitric oxide and MPP+-induced hydroxyl radical generation
-
Obata T. Nitric oxide and MPP+-induced hydroxyl radical generation. J Neural Transm (Vienna) 2006; 113: 1131–1144.
-
(2006)
J Neural Transm (Vienna)
, vol.113
, pp. 1131-1144
-
-
Obata, T.1
-
43
-
-
84926387317
-
Ferroptosis as a p53-mediated activity during tumour suppression
-
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015; 520: 57–62.
-
(2015)
Nature
, vol.520
, pp. 57-62
-
-
Jiang, L.1
Kon, N.2
Li, T.3
Wang, S.J.4
Su, T.5
Hibshoosh, H.6
-
44
-
-
84994059408
-
Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses
-
Ou Y, Wang SJ, Li D, Chu B, Gu W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 2016; 113: E6806–e6812.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. E6806-E6812
-
-
Ou, Y.1
Wang, S.J.2
Li, D.3
Chu, B.4
Gu, W.5
-
45
-
-
84963814113
-
An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model
-
Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JI, Khaku S et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 2016; 30: 918–930.
-
(2016)
Genes Dev
, vol.30
, pp. 918-930
-
-
Jennis, M.1
Kung, C.P.2
Basu, S.3
Budina-Kolomets, A.4
Leu, J.I.5
Khaku, S.6
-
46
-
-
84937525519
-
Glutaminolysis and transferrin regulate ferroptosis
-
Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 2015; 59: 298–308.
-
(2015)
Mol Cell
, vol.59
, pp. 298-308
-
-
Gao, M.1
Monian, P.2
Quadri, N.3
Ramasamy, R.4
Jiang, X.5
-
47
-
-
84921369563
-
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
-
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015; 85: 257–273.
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
48
-
-
0002655418
-
Iron–melanin complex is toxic to dopaminergic neurons in a nigrostriatal co-culture
-
Mochizuki H, Nishi K, Mizuno Y. Iron–melanin complex is toxic to dopaminergic neurons in a nigrostriatal co-culture. Neurodegeneration 1993; 2: 7.
-
(1993)
Neurodegeneration
, vol.2
, pp. 7
-
-
Mochizuki, H.1
Nishi, K.2
Mizuno, Y.3
-
49
-
-
84878347911
-
Iron accumulation in Parkinson's disease
-
Mochizuki H, Yasuda T. Iron accumulation in Parkinson's disease. J Neural Transm (Vienna) 2012; 119: 1511–1514.
-
(2012)
J Neural Transm (Vienna)
, vol.119
, pp. 1511-1514
-
-
Mochizuki, H.1
Yasuda, T.2
-
50
-
-
84978481313
-
Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC
-
Do Van B, Gouel F, Jonneaux A, Timmerman K, Gele P, Petrault M et al. Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC. Neurobiol Dis 2016; 94: 169–178.
-
(2016)
Neurobiol Dis
, vol.94
, pp. 169-178
-
-
Do Van, B.1
Gouel, F.2
Jonneaux, A.3
Timmerman, K.4
Gele, P.5
Petrault, M.6
-
51
-
-
84943358530
-
The neuroprotective role of ferrostatin-1 under rotenone-induced oxidative stress in dopaminergic neuroblastoma cells
-
Kabiraj P, Valenzuela CA, Marin JE, Ramirez DA, Mendez L, Hwang MS et al. The neuroprotective role of ferrostatin-1 under rotenone-induced oxidative stress in dopaminergic neuroblastoma cells. Protein J 2015; 34: 349–358.
-
(2015)
Protein J
, vol.34
, pp. 349-358
-
-
Kabiraj, P.1
Valenzuela, C.A.2
Marin, J.E.3
Ramirez, D.A.4
Mendez, L.5
Hwang, M.S.6
-
52
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8: 2281–2308.
-
(2013)
Nat Protoc
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
Hsu, P.D.2
Wright, J.3
Agarwala, V.4
Scott, D.A.5
Zhang, F.6
|