-
1
-
-
78650582001
-
Current status of molecular markers for early detection of sporadic pancreatic cancer
-
Chakraborty S., Baine M.J., Sasson A.R., Batra S.K. Current status of molecular markers for early detection of sporadic pancreatic cancer. BBA-Rev Cancer 2011, 1815(1):44-64.
-
(2011)
BBA-Rev Cancer
, vol.1815
, Issue.1
, pp. 44-64
-
-
Chakraborty, S.1
Baine, M.J.2
Sasson, A.R.3
Batra, S.K.4
-
2
-
-
79952257911
-
Pancreatic cancer biomarkers and their implication in cancer diagnosis and epidemiology
-
Verma M. Pancreatic cancer biomarkers and their implication in cancer diagnosis and epidemiology. Cancers 2010, 2(4):1830-1837.
-
(2010)
Cancers
, vol.2
, Issue.4
, pp. 1830-1837
-
-
Verma, M.1
-
3
-
-
70350672603
-
Quantifying cancer progression with conjunctive Bayesian Networks
-
Gerstung M., Baudis M., Moch H., Beerenwinkel N. Quantifying cancer progression with conjunctive Bayesian Networks. Bioinform 2009, 25(21):2809-2815.
-
(2009)
Bioinform
, vol.25
, Issue.21
, pp. 2809-2815
-
-
Gerstung, M.1
Baudis, M.2
Moch, H.3
Beerenwinkel, N.4
-
4
-
-
2342469975
-
Validation of the Harvard Cancer Risk Index: a prediction tool for individual cancer risk
-
Kim D.J., Rockhill B., Colditz G.A. Validation of the Harvard Cancer Risk Index: a prediction tool for individual cancer risk. J Clin Epidemiol 2004, 57(4):332-340.
-
(2004)
J Clin Epidemiol
, vol.57
, Issue.4
, pp. 332-340
-
-
Kim, D.J.1
Rockhill, B.2
Colditz, G.A.3
-
5
-
-
0003846041
-
A tutorial on learning with Bayesian Networks
-
Heckerman D. A tutorial on learning with Bayesian Networks. Microsoft Res Tech Report 1995, 57.
-
(1995)
Microsoft Res Tech Report
, vol.57
-
-
Heckerman, D.1
-
6
-
-
30544444469
-
Inference in Bayesian Networks
-
Needham C.J., Bradford J.R., Bulpitt A.J., Westhead D.R. Inference in Bayesian Networks. Nat Biotechnol 2006, 24(1):51-53.
-
(2006)
Nat Biotechnol
, vol.24
, Issue.1
, pp. 51-53
-
-
Needham, C.J.1
Bradford, J.R.2
Bulpitt, A.J.3
Westhead, D.R.4
-
7
-
-
60049086169
-
Bayesian prediction of an epidemic curve
-
Jiang X., Wallstrom G., Cooper G.F., Wagner M.M. Bayesian prediction of an epidemic curve. J Biomed Inform 2009, 42(1):90-99.
-
(2009)
J Biomed Inform
, vol.42
, Issue.1
, pp. 90-99
-
-
Jiang, X.1
Wallstrom, G.2
Cooper, G.F.3
Wagner, M.M.4
-
8
-
-
37249063105
-
-
A Bayesian biosurveillance method that models unknown outbreak diseases. In: Proceedings of the 2nd NSF conference on intelligence and security informatics: Biosurveillance. 2007. New Brunswick, NJ, USA: Springer-Verlag;
-
Shen Y, Cooper G.F. A Bayesian biosurveillance method that models unknown outbreak diseases. In: Proceedings of the 2nd NSF conference on intelligence and security informatics: Biosurveillance. 2007. New Brunswick, NJ, USA: Springer-Verlag; 2007. p. 209-15.
-
(2007)
, pp. 209-15
-
-
Shen, Y.1
Cooper, G.F.2
-
9
-
-
0030982828
-
Construction of a Bayesian network for mammographic diagnosis of breast cancer
-
Charles E.K., Linda M.R., Katherine A.S., Peter H. Construction of a Bayesian network for mammographic diagnosis of breast cancer. Comput Biol Med 1997, 27(1):19-29.
-
(1997)
Comput Biol Med
, vol.27
, Issue.1
, pp. 19-29
-
-
Charles, E.K.1
Linda, M.R.2
Katherine, A.S.3
Peter, H.4
-
10
-
-
0346580118
-
-
Identification of findings suspicious for breast cancer based on natural language processing of mammogram reports. In: AMIA Annu Fall Symp;
-
Jain NL, Friedman C. Identification of findings suspicious for breast cancer based on natural language processing of mammogram reports. In: AMIA Annu Fall Symp; 1997. p. 829-33.
-
(1997)
, pp. 829-33
-
-
Jain, N.L.1
Friedman, C.2
-
11
-
-
0033135155
-
Computer-assisted diagnosis of breast cancer using a data-driven Bayesian Belief Network
-
Wang X-H., Zheng B., Good W.F., King J.L., Chang Y.-H. Computer-assisted diagnosis of breast cancer using a data-driven Bayesian Belief Network. Int J Med Inform 1999, 54(2):115-126.
-
(1999)
Int J Med Inform
, vol.54
, Issue.2
, pp. 115-126
-
-
Wang, X.-H.1
Zheng, B.2
Good, W.F.3
King, J.L.4
Chang, Y.-H.5
-
12
-
-
33747603683
-
Bayesian Network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience
-
Burnside E.S., Rubin D.L., Fine J.P., Shachter R.D., Sisney G.A., Leung W.K. Bayesian Network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience. Radiology 2006, 240(3):8.
-
(2006)
Radiology
, vol.240
, Issue.3
, pp. 8
-
-
Burnside, E.S.1
Rubin, D.L.2
Fine, J.P.3
Shachter, R.D.4
Sisney, G.A.5
Leung, W.K.6
-
13
-
-
34548509520
-
Diagnosis of breast cancer using Bayesian Networks: a case study
-
Nicandro C.-R., Héctor Gabriel A.-M., Humberto C.-C., Luis Alonso N.-F., Rocío Erandi B.-M. Diagnosis of breast cancer using Bayesian Networks: a case study. Comput Biol Med 2007, 37(11):1553-1564.
-
(2007)
Comput Biol Med
, vol.37
, Issue.11
, pp. 1553-1564
-
-
Nicandro, C.-R.1
Héctor Gabriel, A.-M.2
Humberto, C.-C.3
Luis Alonso, N.-F.4
Rocío Erandi, B.-M.5
-
14
-
-
35148846427
-
-
Bayesian network decomposition for modeling breast cancer detection. In: Bellazzi R, AbuHanna A, Hunter J editors. Artificial intelligence in medicine. Berlin/Heidelberg: Springer;
-
Velikova M, de Carvalho Ferreira N, Lucas P. Bayesian network decomposition for modeling breast cancer detection. In: Bellazzi R, AbuHanna A, Hunter J editors. Artificial intelligence in medicine. Berlin/Heidelberg: Springer; 2007. p. 346-50.
-
(2007)
, pp. 346-50
-
-
Velikova, M.1
de Carvalho Ferreira, N.2
Lucas, P.3
-
15
-
-
52149120077
-
Toward expert knowledge representation for automatic breast cancer detection
-
Springer, Berlin/Heidelberg, D. Dochev, M. Pistore, P. Traverso (Eds.)
-
Velikova M., Samulski M., Karssemeijer N., Lucas P. Toward expert knowledge representation for automatic breast cancer detection. Artificial intelligence: methodology, Systems, and Applications 2008, 333-344. Springer, Berlin/Heidelberg. D. Dochev, M. Pistore, P. Traverso (Eds.).
-
(2008)
Artificial intelligence: methodology, Systems, and Applications
, pp. 333-344
-
-
Velikova, M.1
Samulski, M.2
Karssemeijer, N.3
Lucas, P.4
-
16
-
-
84865378287
-
Exploring Bayesian Networks for medical decision support in breast cancer detection
-
Gadewadikar J., Kuljaca O., Agyepong K., Sarigul E., Zheng Y., Zhang P. Exploring Bayesian Networks for medical decision support in breast cancer detection. Afric J Math Comput Sci Res 2010, 3(10):7.
-
(2010)
Afric J Math Comput Sci Res
, vol.3
, Issue.10
, pp. 7
-
-
Gadewadikar, J.1
Kuljaca, O.2
Agyepong, K.3
Sarigul, E.4
Zheng, Y.5
Zhang, P.6
-
17
-
-
79251552581
-
Development of a Bayesian classifier for breast cancer risk stratification: a feasibility study
-
Stojadinovic A., Eberhardt C., Henry L., Eberhardt J., Elster E.A., Peoples G.E., et al. Development of a Bayesian classifier for breast cancer risk stratification: a feasibility study. J Plast Surg 2010, 10(e25).
-
(2010)
J Plast Surg
, vol.10
-
-
Stojadinovic, A.1
Eberhardt, C.2
Henry, L.3
Eberhardt, J.4
Elster, E.A.5
Peoples, G.E.6
-
18
-
-
60349099441
-
Likelihood ratios of clinical, laboratory and image data of pancreatic cancer: Bayesian approach
-
De Icaza E., López-Cervantes M., Arredondo A., Robles-Díaz G. Likelihood ratios of clinical, laboratory and image data of pancreatic cancer: Bayesian approach. J Evalut Clin Pract 2009, 15(1):62-68.
-
(2009)
J Evalut Clin Pract
, vol.15
, Issue.1
, pp. 62-68
-
-
De Icaza, E.1
López-Cervantes, M.2
Arredondo, A.3
Robles-Díaz, G.4
-
19
-
-
38649102485
-
On probabilistic inference by weighted model counting
-
Chavira M., Darwiche A. On probabilistic inference by weighted model counting. Artif Intell 2008, 172(6-7):772-799.
-
(2008)
Artif Intell
, vol.172
, Issue.6-7
, pp. 772-799
-
-
Chavira, M.1
Darwiche, A.2
-
20
-
-
77649253970
-
Modeling prognostic factors in resectable Pancreatic Adenocarcinomas
-
Botsis T., Anagnostou V.K., Hartvigsen G., Hripcsak G., Weng C. Modeling prognostic factors in resectable Pancreatic Adenocarcinomas. Cancer Inform 2010, 2009(7):281.
-
(2010)
Cancer Inform
, vol.2009
, Issue.7
, pp. 281
-
-
Botsis, T.1
Anagnostou, V.K.2
Hartvigsen, G.3
Hripcsak, G.4
Weng, C.5
-
21
-
-
80052880343
-
Developing a multivariable prognostic model for pancreatic endocrine tumors using the clinical data warehouse resources of a single institution
-
Botsis T., Anagnostou V.K., Hartvigsen G., Hripcsak G., Weng C. Developing a multivariable prognostic model for pancreatic endocrine tumors using the clinical data warehouse resources of a single institution. Appl Clin Inform 2010, 1(1):12.
-
(2010)
Appl Clin Inform
, vol.1
, Issue.1
, pp. 12
-
-
Botsis, T.1
Anagnostou, V.K.2
Hartvigsen, G.3
Hripcsak, G.4
Weng, C.5
-
22
-
-
0003212645
-
A fundamental tradeoff in knowledge representation and reasoning, in Readings
-
Morgan Kaufmann, R. Brachman, H. Levesque (Eds.)
-
Levesque H.J., Brachman R.J. A fundamental tradeoff in knowledge representation and reasoning, in Readings. Knowledge representation 1985, 41-70. Morgan Kaufmann. R. Brachman, H. Levesque (Eds.).
-
(1985)
Knowledge representation
, pp. 41-70
-
-
Levesque, H.J.1
Brachman, R.J.2
-
23
-
-
13344278672
-
Content-rich biological network constructed by mining PubMed abstracts
-
Chen H., Sharp B. Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinform 2004, 5(1):147.
-
(2004)
BMC Bioinform
, vol.5
, Issue.1
, pp. 147
-
-
Chen, H.1
Sharp, B.2
-
24
-
-
80052881087
-
-
Learning Bayesian Networks. Illustrated edition 2003. Prentice Hall;
-
Neapolitan RE. Learning Bayesian Networks. Illustrated edition 2003. Prentice Hall; 2003.
-
(2003)
-
-
Neapolitan, R.E.1
-
26
-
-
70449576130
-
Message passing for hybrid Bayesian Networks: representation, propagation, and integration
-
Wei S., Chang K.C. Message passing for hybrid Bayesian Networks: representation, propagation, and integration. IEEE T Aero Electron Syst 2009, 45(4):1525-1537.
-
(2009)
IEEE T Aero Electron Syst
, vol.45
, Issue.4
, pp. 1525-1537
-
-
Wei, S.1
Chang, K.C.2
-
27
-
-
80052911234
-
-
Non-negative matrix factorization to speed up interior point method of SVM training, in Stanford 50: state of the art and future directions of computational mathematics and numerical computing. Stanford University;
-
Zhao D. Non-negative matrix factorization to speed up interior point method of SVM training, in Stanford 50: state of the art and future directions of computational mathematics and numerical computing. Stanford University; 2007.
-
(2007)
-
-
Zhao, D.1
-
28
-
-
0347210450
-
-
Towards a comprehensive medical language processing system: methods and issues. In: AMIA Annu Fall Symp;
-
Friedman C. Towards a comprehensive medical language processing system: methods and issues. In: AMIA Annu Fall Symp; 1997. p. 595-9.
-
(1997)
, pp. 595-9
-
-
Friedman, C.1
-
29
-
-
0034567167
-
-
A broad-coverage natural language processing system. In: AMIA symp;
-
Friedman C. A broad-coverage natural language processing system. In: AMIA symp; 2000. p. 270-4.
-
(2000)
, pp. 270-4
-
-
Friedman, C.1
-
30
-
-
0032240509
-
-
An evaluation of natural language processing methodologies. In: AMIA symp;
-
Friedman C, Hripcsak G, Shablinsky I. An evaluation of natural language processing methodologies. In: AMIA symp; 1998. p. 855-9.
-
(1998)
, pp. 855-9
-
-
Friedman, C.1
Hripcsak, G.2
Shablinsky, I.3
-
31
-
-
0030333390
-
-
Identification of suspected tuberculosis patients based on natural language processing of chest radiograph reports. In: AMIA Annu Fall Symp;
-
Jain NL, Knirsch CA, Friedman C, Hripcsak G. Identification of suspected tuberculosis patients based on natural language processing of chest radiograph reports. In: AMIA Annu Fall Symp; 1996. p. 542-6.
-
(1996)
, pp. 542-6
-
-
Jain, N.L.1
Knirsch, C.A.2
Friedman, C.3
Hripcsak, G.4
-
32
-
-
34047218909
-
-
Weighted Bayesian Network for visual tracking. In: Pattern recognition, 2006. ICPR 2006. 18th international conference on;
-
Yue Z, Huang TS. Weighted Bayesian Network for visual tracking. In: Pattern recognition, 2006. ICPR 2006. 18th international conference on; 2006. p. 523-6.
-
(2006)
, pp. 523-6
-
-
Yue, Z.1
Huang, T.S.2
|