메뉴 건너뛰기




Volumn 44, Issue 5, 2011, Pages 859-868

Combining PubMed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction

Author keywords

Bayesian method; Electronic Health Records; Pancreatic neoplasms; Text mining

Indexed keywords

ACCURACY IMPROVEMENT; BAYESIAN METHODS; BAYESIAN NETWORK INFERENCE; CASE-CONTROL; DATA SETS; ELECTRONIC HEALTH RECORD; K-NEAREST NEIGHBORS; PANCREATIC CANCERS; PANCREATIC NEOPLASMS; PRIOR PROBABILITY; RISK FACTORS; TEXT MINING;

EID: 80052891202     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2011.05.004     Document Type: Article
Times cited : (108)

References (32)
  • 1
    • 78650582001 scopus 로고    scopus 로고
    • Current status of molecular markers for early detection of sporadic pancreatic cancer
    • Chakraborty S., Baine M.J., Sasson A.R., Batra S.K. Current status of molecular markers for early detection of sporadic pancreatic cancer. BBA-Rev Cancer 2011, 1815(1):44-64.
    • (2011) BBA-Rev Cancer , vol.1815 , Issue.1 , pp. 44-64
    • Chakraborty, S.1    Baine, M.J.2    Sasson, A.R.3    Batra, S.K.4
  • 2
    • 79952257911 scopus 로고    scopus 로고
    • Pancreatic cancer biomarkers and their implication in cancer diagnosis and epidemiology
    • Verma M. Pancreatic cancer biomarkers and their implication in cancer diagnosis and epidemiology. Cancers 2010, 2(4):1830-1837.
    • (2010) Cancers , vol.2 , Issue.4 , pp. 1830-1837
    • Verma, M.1
  • 3
    • 70350672603 scopus 로고    scopus 로고
    • Quantifying cancer progression with conjunctive Bayesian Networks
    • Gerstung M., Baudis M., Moch H., Beerenwinkel N. Quantifying cancer progression with conjunctive Bayesian Networks. Bioinform 2009, 25(21):2809-2815.
    • (2009) Bioinform , vol.25 , Issue.21 , pp. 2809-2815
    • Gerstung, M.1    Baudis, M.2    Moch, H.3    Beerenwinkel, N.4
  • 4
    • 2342469975 scopus 로고    scopus 로고
    • Validation of the Harvard Cancer Risk Index: a prediction tool for individual cancer risk
    • Kim D.J., Rockhill B., Colditz G.A. Validation of the Harvard Cancer Risk Index: a prediction tool for individual cancer risk. J Clin Epidemiol 2004, 57(4):332-340.
    • (2004) J Clin Epidemiol , vol.57 , Issue.4 , pp. 332-340
    • Kim, D.J.1    Rockhill, B.2    Colditz, G.A.3
  • 5
    • 0003846041 scopus 로고
    • A tutorial on learning with Bayesian Networks
    • Heckerman D. A tutorial on learning with Bayesian Networks. Microsoft Res Tech Report 1995, 57.
    • (1995) Microsoft Res Tech Report , vol.57
    • Heckerman, D.1
  • 8
    • 37249063105 scopus 로고    scopus 로고
    • A Bayesian biosurveillance method that models unknown outbreak diseases. In: Proceedings of the 2nd NSF conference on intelligence and security informatics: Biosurveillance. 2007. New Brunswick, NJ, USA: Springer-Verlag;
    • Shen Y, Cooper G.F. A Bayesian biosurveillance method that models unknown outbreak diseases. In: Proceedings of the 2nd NSF conference on intelligence and security informatics: Biosurveillance. 2007. New Brunswick, NJ, USA: Springer-Verlag; 2007. p. 209-15.
    • (2007) , pp. 209-15
    • Shen, Y.1    Cooper, G.F.2
  • 9
    • 0030982828 scopus 로고    scopus 로고
    • Construction of a Bayesian network for mammographic diagnosis of breast cancer
    • Charles E.K., Linda M.R., Katherine A.S., Peter H. Construction of a Bayesian network for mammographic diagnosis of breast cancer. Comput Biol Med 1997, 27(1):19-29.
    • (1997) Comput Biol Med , vol.27 , Issue.1 , pp. 19-29
    • Charles, E.K.1    Linda, M.R.2    Katherine, A.S.3    Peter, H.4
  • 10
    • 0346580118 scopus 로고    scopus 로고
    • Identification of findings suspicious for breast cancer based on natural language processing of mammogram reports. In: AMIA Annu Fall Symp;
    • Jain NL, Friedman C. Identification of findings suspicious for breast cancer based on natural language processing of mammogram reports. In: AMIA Annu Fall Symp; 1997. p. 829-33.
    • (1997) , pp. 829-33
    • Jain, N.L.1    Friedman, C.2
  • 11
    • 0033135155 scopus 로고    scopus 로고
    • Computer-assisted diagnosis of breast cancer using a data-driven Bayesian Belief Network
    • Wang X-H., Zheng B., Good W.F., King J.L., Chang Y.-H. Computer-assisted diagnosis of breast cancer using a data-driven Bayesian Belief Network. Int J Med Inform 1999, 54(2):115-126.
    • (1999) Int J Med Inform , vol.54 , Issue.2 , pp. 115-126
    • Wang, X.-H.1    Zheng, B.2    Good, W.F.3    King, J.L.4    Chang, Y.-H.5
  • 12
    • 33747603683 scopus 로고    scopus 로고
    • Bayesian Network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience
    • Burnside E.S., Rubin D.L., Fine J.P., Shachter R.D., Sisney G.A., Leung W.K. Bayesian Network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience. Radiology 2006, 240(3):8.
    • (2006) Radiology , vol.240 , Issue.3 , pp. 8
    • Burnside, E.S.1    Rubin, D.L.2    Fine, J.P.3    Shachter, R.D.4    Sisney, G.A.5    Leung, W.K.6
  • 14
    • 35148846427 scopus 로고    scopus 로고
    • Bayesian network decomposition for modeling breast cancer detection. In: Bellazzi R, AbuHanna A, Hunter J editors. Artificial intelligence in medicine. Berlin/Heidelberg: Springer;
    • Velikova M, de Carvalho Ferreira N, Lucas P. Bayesian network decomposition for modeling breast cancer detection. In: Bellazzi R, AbuHanna A, Hunter J editors. Artificial intelligence in medicine. Berlin/Heidelberg: Springer; 2007. p. 346-50.
    • (2007) , pp. 346-50
    • Velikova, M.1    de Carvalho Ferreira, N.2    Lucas, P.3
  • 15
    • 52149120077 scopus 로고    scopus 로고
    • Toward expert knowledge representation for automatic breast cancer detection
    • Springer, Berlin/Heidelberg, D. Dochev, M. Pistore, P. Traverso (Eds.)
    • Velikova M., Samulski M., Karssemeijer N., Lucas P. Toward expert knowledge representation for automatic breast cancer detection. Artificial intelligence: methodology, Systems, and Applications 2008, 333-344. Springer, Berlin/Heidelberg. D. Dochev, M. Pistore, P. Traverso (Eds.).
    • (2008) Artificial intelligence: methodology, Systems, and Applications , pp. 333-344
    • Velikova, M.1    Samulski, M.2    Karssemeijer, N.3    Lucas, P.4
  • 18
    • 60349099441 scopus 로고    scopus 로고
    • Likelihood ratios of clinical, laboratory and image data of pancreatic cancer: Bayesian approach
    • De Icaza E., López-Cervantes M., Arredondo A., Robles-Díaz G. Likelihood ratios of clinical, laboratory and image data of pancreatic cancer: Bayesian approach. J Evalut Clin Pract 2009, 15(1):62-68.
    • (2009) J Evalut Clin Pract , vol.15 , Issue.1 , pp. 62-68
    • De Icaza, E.1    López-Cervantes, M.2    Arredondo, A.3    Robles-Díaz, G.4
  • 19
    • 38649102485 scopus 로고    scopus 로고
    • On probabilistic inference by weighted model counting
    • Chavira M., Darwiche A. On probabilistic inference by weighted model counting. Artif Intell 2008, 172(6-7):772-799.
    • (2008) Artif Intell , vol.172 , Issue.6-7 , pp. 772-799
    • Chavira, M.1    Darwiche, A.2
  • 20
  • 21
    • 80052880343 scopus 로고    scopus 로고
    • Developing a multivariable prognostic model for pancreatic endocrine tumors using the clinical data warehouse resources of a single institution
    • Botsis T., Anagnostou V.K., Hartvigsen G., Hripcsak G., Weng C. Developing a multivariable prognostic model for pancreatic endocrine tumors using the clinical data warehouse resources of a single institution. Appl Clin Inform 2010, 1(1):12.
    • (2010) Appl Clin Inform , vol.1 , Issue.1 , pp. 12
    • Botsis, T.1    Anagnostou, V.K.2    Hartvigsen, G.3    Hripcsak, G.4    Weng, C.5
  • 22
    • 0003212645 scopus 로고
    • A fundamental tradeoff in knowledge representation and reasoning, in Readings
    • Morgan Kaufmann, R. Brachman, H. Levesque (Eds.)
    • Levesque H.J., Brachman R.J. A fundamental tradeoff in knowledge representation and reasoning, in Readings. Knowledge representation 1985, 41-70. Morgan Kaufmann. R. Brachman, H. Levesque (Eds.).
    • (1985) Knowledge representation , pp. 41-70
    • Levesque, H.J.1    Brachman, R.J.2
  • 23
    • 13344278672 scopus 로고    scopus 로고
    • Content-rich biological network constructed by mining PubMed abstracts
    • Chen H., Sharp B. Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinform 2004, 5(1):147.
    • (2004) BMC Bioinform , vol.5 , Issue.1 , pp. 147
    • Chen, H.1    Sharp, B.2
  • 24
    • 80052881087 scopus 로고    scopus 로고
    • Learning Bayesian Networks. Illustrated edition 2003. Prentice Hall;
    • Neapolitan RE. Learning Bayesian Networks. Illustrated edition 2003. Prentice Hall; 2003.
    • (2003)
    • Neapolitan, R.E.1
  • 26
    • 70449576130 scopus 로고    scopus 로고
    • Message passing for hybrid Bayesian Networks: representation, propagation, and integration
    • Wei S., Chang K.C. Message passing for hybrid Bayesian Networks: representation, propagation, and integration. IEEE T Aero Electron Syst 2009, 45(4):1525-1537.
    • (2009) IEEE T Aero Electron Syst , vol.45 , Issue.4 , pp. 1525-1537
    • Wei, S.1    Chang, K.C.2
  • 27
    • 80052911234 scopus 로고    scopus 로고
    • Non-negative matrix factorization to speed up interior point method of SVM training, in Stanford 50: state of the art and future directions of computational mathematics and numerical computing. Stanford University;
    • Zhao D. Non-negative matrix factorization to speed up interior point method of SVM training, in Stanford 50: state of the art and future directions of computational mathematics and numerical computing. Stanford University; 2007.
    • (2007)
    • Zhao, D.1
  • 28
    • 0347210450 scopus 로고    scopus 로고
    • Towards a comprehensive medical language processing system: methods and issues. In: AMIA Annu Fall Symp;
    • Friedman C. Towards a comprehensive medical language processing system: methods and issues. In: AMIA Annu Fall Symp; 1997. p. 595-9.
    • (1997) , pp. 595-9
    • Friedman, C.1
  • 29
    • 0034567167 scopus 로고    scopus 로고
    • A broad-coverage natural language processing system. In: AMIA symp;
    • Friedman C. A broad-coverage natural language processing system. In: AMIA symp; 2000. p. 270-4.
    • (2000) , pp. 270-4
    • Friedman, C.1
  • 30
    • 0032240509 scopus 로고    scopus 로고
    • An evaluation of natural language processing methodologies. In: AMIA symp;
    • Friedman C, Hripcsak G, Shablinsky I. An evaluation of natural language processing methodologies. In: AMIA symp; 1998. p. 855-9.
    • (1998) , pp. 855-9
    • Friedman, C.1    Hripcsak, G.2    Shablinsky, I.3
  • 31
    • 0030333390 scopus 로고    scopus 로고
    • Identification of suspected tuberculosis patients based on natural language processing of chest radiograph reports. In: AMIA Annu Fall Symp;
    • Jain NL, Knirsch CA, Friedman C, Hripcsak G. Identification of suspected tuberculosis patients based on natural language processing of chest radiograph reports. In: AMIA Annu Fall Symp; 1996. p. 542-6.
    • (1996) , pp. 542-6
    • Jain, N.L.1    Knirsch, C.A.2    Friedman, C.3    Hripcsak, G.4
  • 32
    • 34047218909 scopus 로고    scopus 로고
    • Weighted Bayesian Network for visual tracking. In: Pattern recognition, 2006. ICPR 2006. 18th international conference on;
    • Yue Z, Huang TS. Weighted Bayesian Network for visual tracking. In: Pattern recognition, 2006. ICPR 2006. 18th international conference on; 2006. p. 523-6.
    • (2006) , pp. 523-6
    • Yue, Z.1    Huang, T.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.