메뉴 건너뛰기




Volumn 18, Issue 5, 2011, Pages 601-606

A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; HOSPITAL DISCHARGE; INFORMATION PROCESSING; MACHINE LEARNING; MEDICAL INFORMATICS; MEDICAL NAMED ENTITY TAGGER; RECOGNITION;

EID: 80053271549     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2011-000163     Document Type: Article
Times cited : (246)

References (42)
  • 1
    • 8044228110 scopus 로고
    • The analysis and processing of clinical narrative
    • Sager N, Friedman C, Chi E, et al. The analysis and processing of clinical narrative. MedInfo 1986:1101-5.
    • (1986) MedInfo , pp. 1101-1105
    • Sager, N.1    Friedman, C.2    Chi, E.3
  • 3
    • 0028955263 scopus 로고
    • Unlocking clinical data from narrative reports: a study of natural language processing
    • Hripcsak G, Friedman C, Alderson PO, et al. Unlocking clinical data from narrative reports: a study of natural language processing. Ann Intern Med 1995;122:681-8.
    • (1995) Ann Intern Med , vol.122 , pp. 681-688
    • Hripcsak, G.1    Friedman, C.2    Alderson, P.O.3
  • 4
    • 0028403632 scopus 로고
    • A general natural-language text processor for clinical radiology
    • Friedman C, Alderson PO, Austin JH, et al. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc 1994;1:161-74.
    • (1994) J Am Med Inform Assoc , vol.1 , pp. 161-174
    • Friedman, C.1    Alderson, P.O.2    Austin, J.H.3
  • 5
    • 0036082141 scopus 로고    scopus 로고
    • Use of natural language processing to translate clinical information from a database of 889,921 chest radiographic reports
    • Hripcsak G, Austin JH, Alderson PO, et al. Use of natural language processing to translate clinical information from a database of 889,921 chest radiographic reports. Radiology 2002;224:157-63.
    • (2002) Radiology , vol.224 , pp. 157-163
    • Hripcsak, G.1    Austin, J.H.2    Alderson, P.O.3
  • 7
    • 0033258535 scopus 로고    scopus 로고
    • Automatic identification of pneumonia related concepts on chest x-ray reports
    • Fiszman M, Chapman WW, Evans SR, et al. Automatic identification of pneumonia related concepts on chest x-ray reports. Proc AMIA Symp 1999:67-71.
    • (1999) Proc AMIA Symp , pp. 67-71
    • Fiszman, M.1    Chapman, W.W.2    Evans, S.R.3
  • 8
    • 0347840292 scopus 로고    scopus 로고
    • A natural language parsing system for encoding admitting diagnoses
    • Haug PJ, Christensen L, Gundersen M, et al. A natural language parsing system for encoding admitting diagnoses. Proc AMIA Annu Fall Symp 1997:814-18.
    • (1997) Proc AMIA Annu Fall Symp , pp. 814-818
    • Haug, P.J.1    Christensen, L.2    Gundersen, M.3
  • 9
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
    • Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc 2010;17:507-13.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3
  • 10
    • 33748046130 scopus 로고    scopus 로고
    • Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system
    • Zeng QT, Goryachev S, Weiss S, et al. Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Decis Mak 2006;6:30.
    • (2006) BMC Med Inform Decis Mak , vol.6 , pp. 30
    • Zeng, Q.T.1    Goryachev, S.2    Weiss, S.3
  • 11
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: historical perspective and recent advances
    • Aronson AR, Lang FM. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc 2010;17:229-36.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 229-236
    • Aronson, A.R.1    Lang, F.M.2
  • 12
    • 70349455468 scopus 로고    scopus 로고
    • Development and evaluation of a clinical note section header terminology
    • Denny JC, Miller RA, Johnson KB, et al. Development and evaluation of a clinical note section header terminology. AMIA Annu Symp Proc 2008:156-60.
    • (2008) AMIA Annu Symp Proc , pp. 156-160
    • Denny, J.C.1    Miller, R.A.2    Johnson, K.B.3
  • 13
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • Chapman WW, Bridewell W, Hanbury P, et al. A simple algorithm for identifying negated findings and diseases in discharge summaries. J Biomed Inform 2001;34:301-10.
    • (2001) J Biomed Inform , vol.34 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3
  • 14
    • 33947258447 scopus 로고    scopus 로고
    • ProMiner: rule-based protein and gene entity recognition
    • Hanisch D, Fundel K, Mevissen HT, et al. ProMiner: rule-based protein and gene entity recognition. BMC Bioinformatics 2005;6(Suppl 1):S14.
    • (2005) BMC Bioinformatics , vol.6 , Issue.SUPPL 1
    • Hanisch, D.1    Fundel, K.2    Mevissen, H.T.3
  • 15
    • 8444226720 scopus 로고    scopus 로고
    • Term identification in the biomedical literature
    • Krauthammer M, Nenadic G. Term identification in the biomedical literature. J Biomed Inform 2004;37:512-26.
    • (2004) J Biomed Inform , vol.37 , pp. 512-526
    • Krauthammer, M.1    Nenadic, G.2
  • 16
    • 60549093731 scopus 로고    scopus 로고
    • BioTagger-GM: a gene/protein name recognition system
    • Torii M, Hu Z, Wu CH, et al. BioTagger-GM: a gene/protein name recognition system. J Am Med Inform Assoc 2009;16:247-55.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 247-255
    • Torii, M.1    Hu, Z.2    Wu, C.H.3
  • 17
    • 78149487508 scopus 로고    scopus 로고
    • High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge
    • Patrick J, Li M. High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge. J Am Med Inform Assoc 2010;17:524-7.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 524-527
    • Patrick, J.1    Li, M.2
  • 18
    • 78149482677 scopus 로고    scopus 로고
    • Lancet: a high precision medication event extraction system for clinical text
    • Li Z, Liu F, Antieau L, et al. Lancet: a high precision medication event extraction system for clinical text. J Am Med Inform Assoc 2010;17:563-7.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 563-567
    • Li, Z.1    Liu, F.2    Antieau, L.3
  • 19
    • 34748889863 scopus 로고    scopus 로고
    • Syntactically-informed semantic category recognition in discharge summaries
    • Sibanda T, He T, Szolovits P, et al. Syntactically-informed semantic category recognition in discharge summaries. AMIA Annu Symp Proc 2006:714-18.
    • (2006) AMIA Annu Symp Proc , pp. 714-718
    • Sibanda, T.1    He, T.2    Szolovits, P.3
  • 26
    • 84867640802 scopus 로고    scopus 로고
    • Conditional random fields and support vector machines for disorder named entity recognition in clinical texts
    • Columbus, OH: Association for Computational Linguistics
    • Li D, Kipper-Schuler K, Savova G. Conditional random fields and support vector machines for disorder named entity recognition in clinical texts. Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing. Columbus, OH: Association for Computational Linguistics, 2008:94-5.
    • (2008) Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing , pp. 94-95
    • Li, D.1    Kipper-Schuler, K.2    Savova, G.3
  • 27
    • 73949154960 scopus 로고    scopus 로고
    • Biological entity recognition with conditional random fields
    • He Y, Kayaalp M. Biological entity recognition with conditional random fields. AMIA Annu Symp Proc 2008:293-7.
    • (2008) AMIA Annu Symp Proc , pp. 293-297
    • He, Y.1    Kayaalp, M.2
  • 28
    • 20744451122 scopus 로고    scopus 로고
    • POSBIOTM-NER: a trainable biomedical named-entity recognition system
    • Song Y, Kim E, Lee GG, et al. POSBIOTM-NER: a trainable biomedical named-entity recognition system. Bioinformatics 2005;21:2794-6.
    • (2005) Bioinformatics , vol.21 , pp. 2794-2796
    • Song, Y.1    Kim, E.2    Lee, G.G.3
  • 31
    • 5044241106 scopus 로고    scopus 로고
    • MedPost: a part-of-speech tagger for bioMedical text
    • Smith L, Rindflesch T, Wilbur WJ. MedPost: a part-of-speech tagger for bioMedical text. Bioinformatics 2004;20:2320-1.
    • (2004) Bioinformatics , vol.20 , pp. 2320-2321
    • Smith, L.1    Rindflesch, T.2    Wilbur, W.J.3
  • 32
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: a library for large linear classification
    • Fan RE, Chang KW, Hsieh CJ, et al. LIBLINEAR: a library for large linear classification. J Mach Learn Res 2008;9:1871-4.
    • (2008) J Mach Learn Res , vol.9 , pp. 1871-1874
    • Fan, R.E.1    Chang, K.W.2    Hsieh, C.J.3
  • 33
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner O, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc 2010;17:514-18.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 514-518
    • Uzuner, O.1    Solti, I.2    Cadag, E.3
  • 34
    • 70349253684 scopus 로고    scopus 로고
    • CRF versus SVM-Struct for Sequence Labeling. Technical Report, Yahoo Research, Santa Clara, CA
    • Keerthi SS. CRF versus SVM-Struct for Sequence Labeling. Technical Report, Yahoo Research, Santa Clara, CA, USA, 2007.
    • (2007) USA
    • Keerthi, S.S.1
  • 35
    • 0036161242 scopus 로고    scopus 로고
    • Text categorization with support vector machines. how to represent texts in input space?
    • Leopold E, Kindermann J. Text categorization with support vector machines. how to represent texts in input space? Machine Learning 2002;46:423-44.
    • (2002) Machine Learning , vol.46 , pp. 423-444
    • Leopold, E.1    Kindermann, J.2
  • 36
    • 33947307025 scopus 로고    scopus 로고
    • Recognition of protein/gene names from text using an ensemble of classifiers
    • Zhou G, Shen D, Zhang J, et al. Recognition of protein/gene names from text using an ensemble of classifiers. BMC Bioinformatics 2005;6(Suppl 1):S7.
    • (2005) BMC Bioinformatics , vol.6 , Issue.SUPPL 1
    • Zhou, G.1    Shen, D.2    Zhang, J.3
  • 37
    • 2442702846 scopus 로고    scopus 로고
    • Recognizing names in biomedical texts: a machine learning approach
    • Zhou G, Zhang J, Su J, et al. Recognizing names in biomedical texts: a machine learning approach. Bioinformatics 2004;20:1178-90.
    • (2004) Bioinformatics , vol.20 , pp. 1178-1190
    • Zhou, G.1    Zhang, J.2    Su, J.3
  • 38
    • 70350788833 scopus 로고    scopus 로고
    • Evaluation of a method to identify and categorize section headers in clinical documents
    • Denny JC, Spickard A 3rd, Johnson KB, et al. Evaluation of a method to identify and categorize section headers in clinical documents. J Am Med Inform Assoc 2009;16:806-15.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 806-815
    • Denny, J.C.1    Spickard 3rd., A.2    Johnson, K.B.3
  • 39
    • 33947183613 scopus 로고    scopus 로고
    • A grammar-based classification of negations in clinical radiology reports
    • Huang Y, Lowe HJ. A grammar-based classification of negations in clinical radiology reports. AMIA Annu Symp Proc 2005:988.
    • (2005) AMIA Annu Symp Proc , pp. 988
    • Huang, Y.1    Lowe, H.J.2
  • 40
    • 0035180309 scopus 로고    scopus 로고
    • Use of general-purpose negation detection to augment concept indexing of medical documents: a quantitative study using the UMLS
    • Mutalik PG, Deshpande A, Nadkarni PM. Use of general-purpose negation detection to augment concept indexing of medical documents: a quantitative study using the UMLS. J Am Med Inform Assoc 2001;8:598-609.
    • (2001) J Am Med Inform Assoc , vol.8 , pp. 598-609
    • Mutalik, P.G.1    Deshpande, A.2    Nadkarni, P.M.3
  • 41
    • 77950477064 scopus 로고    scopus 로고
    • MedEx: a medication information extraction system for clinical narratives
    • Xu H, Stenner SP, Doan S, et al. MedEx: a medication information extraction system for clinical narratives. J Am Med Inform Assoc 2010;17:19-24.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 19-24
    • Xu, H.1    Stenner, S.P.2    Doan, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.