메뉴 건너뛰기




Volumn 216, Issue , 2015, Pages 624-628

Named Entity Recognition in Chinese Clinical Text Using Deep Neural Network

Author keywords

Chinese Clinical Text; Clinical Natural Language Processing; Deep Learning; Named Entity Recognition; Neural Network

Indexed keywords

BIOINFORMATICS; CHARACTER RECOGNITION; DEEP LEARNING; HEALTH; LINGUISTICS; NATURAL LANGUAGE PROCESSING SYSTEMS; NEURAL NETWORKS; UNSUPERVISED LEARNING;

EID: 84952008061     PISSN: 09269630     EISSN: 18798365     Source Type: Book Series    
DOI: 10.3233/978-1-61499-564-7-624     Document Type: Conference Paper
Times cited : (189)

References (32)
  • 1
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: A review of recent research
    • Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting information from textual documents in the electronic health record: A review of recent research. Yearb Med Inform, 2008; pp. 128-44.
    • (2008) Yearb Med Inform , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3
  • 3
    • 0028403632 scopus 로고
    • A general natural-language text processor for clinical radiology
    • Friedman C, Alderson PO, Austin JH, et al. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc 1994: 1(2): 161-74.
    • (1994) J Am Med Inform Assoc , vol.1 , Issue.2 , pp. 161-174
    • Friedman, C.1    Alderson, P.O.2    Austin, J.H.3
  • 4
    • 0035752429 scopus 로고    scopus 로고
    • Effective mapping of biomedical text to the UMLS Metathesaurus: The MetaMap program
    • Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: The MetaMap program. Proc AMIA Symp, 2001; pp. 17-21.
    • (2001) Proc AMIA Symp , pp. 17-21
    • Aronson, A.R.1
  • 5
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: Historical perspective and recent advances
    • Aronson AR, and Lang FM. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc 2010: 17(3): 229-36.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.3 , pp. 229-236
    • Aronson, A.R.1    Lang, F.M.2
  • 7
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner O, Solti I, and Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc 2010: 17(5): 514-8.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.5 , pp. 514-518
    • Uzuner, O.1    Solti, I.2    Cadag, E.3
  • 8
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions and relations in clinical text
    • Uzuner O, South BR, Shen S, et al. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc 2011: 18(5): 552-6.
    • (2011) J Am Med Inform Assoc , vol.18 , Issue.5 , pp. 552-556
    • Uzuner, O.1    South, B.R.2    Shen, S.3
  • 10
    • 85027911668 scopus 로고    scopus 로고
    • Evaluating the state of the art in disorder recognition and normalization of the clinical narrative
    • Aug 21
    • Pradhan S, Elhadad N, South BR, et al. Evaluating the state of the art in disorder recognition and normalization of the clinical narrative. J Am Med Inform Assoc 2014: Aug 21.
    • (2014) J Am Med Inform Assoc
    • Pradhan, S.1    Elhadad, N.2    South, B.R.3
  • 11
    • 77950477064 scopus 로고    scopus 로고
    • MedEx: A medication information extraction system for clinical narratives
    • Xu H, Stenner SP, Doan S, et al. MedEx: A medication information extraction system for clinical narratives. J Am Med Inform Assoc 2010: 17(1): 19-24.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.1 , pp. 19-24
    • Xu, H.1    Stenner, S.P.2    Doan, S.3
  • 12
    • 80053241946 scopus 로고    scopus 로고
    • Machinelearned solutions for three stages of clinical information extraction: The state of the art at i2b2 2010
    • de Bruijn B, Cherry C, Kiritchenko S, et al. Machinelearned solutions for three stages of clinical information extraction: The state of the art at i2b2 2010. J Am Med Inform Assoc 2011: 18(5): 557-62.
    • (2011) J Am Med Inform Assoc , vol.18 , Issue.5 , pp. 557-562
    • De Bruijn, B.1    Cherry, C.2    Kiritchenko, S.3
  • 13
    • 80053271549 scopus 로고    scopus 로고
    • A study of machinelearning-based approaches to extract clinical entities and their assertions from discharge summaries
    • Jiang M, Chen Y, Liu M, et al. A study of machinelearning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc 2011: 18(5): 601-6.
    • (2011) J Am Med Inform Assoc , vol.18 , Issue.5 , pp. 601-606
    • Jiang, M.1    Chen, Y.2    Liu, M.3
  • 14
    • 80053268343 scopus 로고    scopus 로고
    • Using machine learning for concept extraction on clinical documents from multiple data sources
    • Torii M, Wagholikar K, and Liu H. Using machine learning for concept extraction on clinical documents from multiple data sources. J Am Med Inform Assoc 2011: 18(5): 580-7.
    • (2011) J Am Med Inform Assoc , vol.18 , Issue.5 , pp. 580-587
    • Torii, M.1    Wagholikar, K.2    Liu, H.3
  • 17
    • 84875945878 scopus 로고    scopus 로고
    • Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features
    • Tang B, Cao H, Wu Y, et al. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features. BMC Med Inform Decis Mak 2013: 13 (1 Suppl): S1.
    • (2013) BMC Med Inform Decis Mak , vol.13 , Issue.1 , pp. S1
    • Tang, B.1    Cao, H.2    Wu, Y.3
  • 19
    • 84906318760 scopus 로고    scopus 로고
    • A preliminary work on symptom name recognition from free-text clinical records of traditional Chinese medicine using conditional random fields and reasonable features
    • Wang Y, Liu Y, Yu Z, et al. A preliminary work on symptom name recognition from free-text clinical records of traditional chinese medicine using conditional random fields and reasonable features. Proceedings of the 2012 Workshop on Biomedical Natural Language Processing, 2012; pp. 223-30.
    • (2012) Proceedings of the 2012 Workshop on Biomedical Natural Language Processing , pp. 223-230
    • Wang, Y.1    Liu, Y.2    Yu, Z.3
  • 20
    • 84893553052 scopus 로고    scopus 로고
    • Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries
    • Xu Y, Wang Y, Liu T, et al. Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries. J Am Med Inform Assoc 2014: 21: E84-92.
    • (2014) J Am Med Inform Assoc , vol.21 , pp. e84-92
    • Xu, Y.1    Wang, Y.2    Liu, T.3
  • 21
    • 84906308068 scopus 로고    scopus 로고
    • A comprehensive study of named entity recognition in Chinese clinical text
    • Lei J, Tang B, Lu X, et al. A comprehensive study of named entity recognition in Chinese clinical text. J Am Med Inform Assoc 2014: 21(5): 808-14.
    • (2014) J Am Med Inform Assoc , vol.21 , Issue.5 , pp. 808-814
    • Lei, J.1    Tang, B.2    Lu, X.3
  • 23
    • 80053558787 scopus 로고    scopus 로고
    • Natural language processing (almost) from scratch
    • Collobert R, Weston J, et al. Natural Language Processing (Almost) from Scratch. J. Mach Learn Res 2011: 12: 2493-537.
    • (2011) J. Mach Learn Res , vol.12 , pp. 2493-2537
    • Collobert, R.1    Weston, J.2
  • 25
    • 84892142922 scopus 로고    scopus 로고
    • Computer science: The learning machines
    • Jones N. Computer science: The learning machines. Nature 2014: 505(7482): 146-8.
    • (2014) Nature , vol.505 , Issue.7482 , pp. 146-148
    • Jones, N.1
  • 26
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, and Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006: 313(5786): 504-7.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 28
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, IEEE 2012: 29(6): 82-97.
    • (2012) Signal Processing Magazine, IEEE , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.