메뉴 건너뛰기




Volumn 66, Issue 4, 2013, Pages 398-407

Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes

Author keywords

Bagging; Boosting; Classification; Classification trees; Heart failure; Prediction; Random forests; Regression methods; Regression trees; Support vector machines

Indexed keywords

AGED; ARTICLE; BOOSTING; BOOTSTRAP AGGREGATION; CANADA; CARDIAC PATIENT; CASE STUDY; DATA MINING; DISEASE CLASSIFICATION; HEART EJECTION FRACTION; HEART FAILURE; HUMAN; INFORMATION PROCESSING; LOGISTIC REGRESSION ANALYSIS; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; MEDICAL LITERATURE; POPULATION RESEARCH; PRIORITY JOURNAL; PROBABILITY; PROGNOSIS; RANDOM FOREST; SUPPORT VECTOR MACHINE;

EID: 84875243337     PISSN: 08954356     EISSN: 18785921     Source Type: Journal    
DOI: 10.1016/j.jclinepi.2012.11.008     Document Type: Article
Times cited : (271)

References (38)
  • 2
    • 34250613098 scopus 로고    scopus 로고
    • A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality
    • P.C. Austin A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality Stat Med 26 2007 2937 2957
    • (2007) Stat Med , vol.26 , pp. 2937-2957
    • Austin, P.C.1
  • 3
    • 0000173488 scopus 로고
    • Tree-based methods
    • Chambers JM, Hastie TJ (eds) Chapman & Hall: New York, NY
    • Clark LA, Pregibon D. Tree-based methods. In: Chambers JM, Hastie TJ (eds) Statistical models in S. Chapman & Hall: New York, NY, 1993:377-419.
    • (1993) Statistical Models in S. , pp. 377-419
    • Clark, L.A.1    Pregibon, D.2
  • 5
    • 65549145093 scopus 로고    scopus 로고
    • 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in collaboration with the International Society for Heart and Lung Transplantation
    • S.A. Hunt, W.T. Abraham, M.H. Chin, A.M. Feldman, G.S. Francis, and T.G. Ganiats 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation Circulation 14 2009 e391 e479
    • (2009) Circulation , vol.14
    • Hunt, S.A.1    Abraham, W.T.2    Chin, M.H.3    Feldman, A.M.4    Francis, G.S.5    Ganiats, T.G.6
  • 6
    • 67649497912 scopus 로고    scopus 로고
    • Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: Insights from the framingham heart study of the national heart, lung, and blood institute
    • D.S. Lee, P. Gona, R.S. Vasan, M.G. Larson, E.J. Benjamin, and T.J. Wang Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the framingham heart study of the national heart, lung, and blood institute Circulation 24 2009 3070 3077
    • (2009) Circulation , vol.24 , pp. 3070-3077
    • Lee, D.S.1    Gona, P.2    Vasan, R.S.3    Larson, M.G.4    Benjamin, E.J.5    Wang, T.J.6
  • 8
    • 0031706490 scopus 로고    scopus 로고
    • Differentiation of benign and malignant breast tumors by logistic regression and a classification tree using Doppler flow signals
    • W. Sauerbrei, H. Madjar, and H.J. Prompeler Differentiation of benign and malignant breast tumors by logistic regression and a classification tree using Doppler flow signals Methods Inf Med 37 1998 226 234
    • (1998) Methods Inf Med , vol.37 , pp. 226-234
    • Sauerbrei, W.1    Madjar, H.2    Prompeler, H.J.3
  • 9
    • 3242790270 scopus 로고    scopus 로고
    • Dental data mining: Potential pitfalls and practical issues
    • S.A. Gansky Dental data mining: potential pitfalls and practical issues Adv Dental Res 17 2003 109 114
    • (2003) Adv Dental Res , vol.17 , pp. 109-114
    • Gansky, S.A.1
  • 10
    • 0031889945 scopus 로고    scopus 로고
    • Recursive partitioning for the identification of disease risk subgroups: A case-control study of subarachnoid hemorrhage
    • L.M. Nelson, D.A. Bloch, W.T. Longstreth Jr., and H. Shi Recursive partitioning for the identification of disease risk subgroups: a case-control study of subarachnoid hemorrhage J Clin Epidemiol 51 1998 199 209
    • (1998) J Clin Epidemiol , vol.51 , pp. 199-209
    • Nelson, L.M.1    Bloch, D.A.2    Longstreth Jr., W.T.3    Shi, H.4
  • 11
    • 0348220947 scopus 로고    scopus 로고
    • Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression
    • S.C. Lemon, J. Roy, M.A. Clark, P.D. Friedmann, and W. Rakowski Classification and regression tree analysis in public health: methodological review and comparison with logistic regression Ann Behav Med 26 2003 172 181
    • (2003) Ann Behav Med , vol.26 , pp. 172-181
    • Lemon, S.C.1    Roy, J.2    Clark, M.A.3    Friedmann, P.D.4    Rakowski, W.5
  • 12
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learn 45 2001 5 32
    • (2001) Machine Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 16
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • A. Liaw, and M. Wiener Classification and regression by randomForest R News 2 2002 18 22
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 18
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • P. Buhlmann, and T. Hathorn Boosting algorithms: regularization, prediction and model fitting Stat Sci 22 2007 477 505
    • (2007) Stat Sci , vol.22 , pp. 477-505
    • Buhlmann, P.1    Hathorn, T.2
  • 19
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion)
    • J. Friedman, T. Hastie, and R. Tibshirani Additive logistic regression: a statistical view of boosting (with discussion) Ann Stat 28 2000 337 407
    • (2000) Ann Stat , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 21
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • D.F. McCaffrey, G. Ridgeway, and A.R. Morral Propensity score estimation with boosted regression for evaluating causal effects in observational studies Psychol Methods 9 2004 403 425
    • (2004) Psychol Methods , vol.9 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 27
    • 72249094112 scopus 로고    scopus 로고
    • Effectiveness of public report cards for improving the quality of cardiac care: The EFFECT study: A randomized trial
    • J.V. Tu, L.R. Donovan, D.S. Lee, J.T. Wang, P.C. Austin, and D.A. Alter Effectiveness of public report cards for improving the quality of cardiac care: the EFFECT study: a randomized trial J Am Med Assoc 302 2009 2330 2337
    • (2009) J Am Med Assoc , vol.302 , pp. 2330-2337
    • Tu, J.V.1    Donovan, L.R.2    Lee, D.S.3    Wang, J.T.4    Austin, P.C.5    Alter, D.A.6
  • 29
    • 84867185889 scopus 로고    scopus 로고
    • Discriminating clinical features of heart failure with preserved vs. reduced ejection fraction in the community
    • J.E. Ho, P. Gona, M.J. Pencina, J.V. Tu, P.C. Austin, and R.S. Vasan Discriminating clinical features of heart failure with preserved vs. reduced ejection fraction in the community Eur Heart J 33 2012 1734 1741
    • (2012) Eur Heart J , vol.33 , pp. 1734-1741
    • Ho, J.E.1    Gona, P.2    Pencina, M.J.3    Tu, J.V.4    Austin, P.C.5    Vasan, R.S.6
  • 32
    • 84865535937 scopus 로고    scopus 로고
    • Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?
    • 10.1002/bimj.201100251
    • P.C. Austin, D.S. Lee, E.W. Steyerberg, and J.V. Tu Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods? Biom J 54 2012 657 673 10.1002/bimj.201100251
    • (2012) Biom J , vol.54 , pp. 657-673
    • Austin, P.C.1    Lee, D.S.2    Steyerberg, E.W.3    Tu, J.V.4
  • 33
    • 84865678613 scopus 로고    scopus 로고
    • Boosted classification trees result in minor to modest improvement in the accuracy in classifying cardiovascular outcomes compared to conventional classification trees
    • P.C. Austin, and D.S. Lee Boosted classification trees result in minor to modest improvement in the accuracy in classifying cardiovascular outcomes compared to conventional classification trees Am J Cardiovasc Dis 1 2011 1 15
    • (2011) Am J Cardiovasc Dis , vol.1 , pp. 1-15
    • Austin, P.C.1    Lee, D.S.2
  • 34
    • 77953635924 scopus 로고    scopus 로고
    • Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches
    • J. Wu, J. Roy, and W.F. Stewart Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches Med Care 48 6, Suppl 1 2010 S106 S113
    • (2010) Med Care , vol.48 , Issue.6 SUPPL. 1
    • Wu, J.1    Roy, J.2    Stewart, W.F.3
  • 35
    • 80051660823 scopus 로고    scopus 로고
    • Data mining methods in the prediction of dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests
    • 10.1186/1756-0500-4-299
    • J. Maroco, D. Silva, A. Rodrigues, M. Guerreiro, I. Santana, and A. de Mendonca Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests BioMed Cent Res Notes 4 2011 1 14 10.1186/1756-0500-4-299
    • (2011) BioMed Cent Res Notes , vol.4 , pp. 1-14
    • Maroco, J.1    Silva, D.2    Rodrigues, A.3    Guerreiro, M.4    Santana, I.5    De Mendonca, A.6
  • 36
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • 10.1016/j.artmed.2004.07.002
    • D. Delen, G. Walker, and A. Kadam Predicting breast cancer survivability: a comparison of three data mining methods Artif Intell Med 34 2004 113 127 10.1016/j.artmed.2004.07.002
    • (2004) Artif Intell Med , vol.34 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.