메뉴 건너뛰기




Volumn 13-17-August-2016, Issue , 2016, Pages 1495-1504

Multi-layer representation learning for medical concepts

Author keywords

Healthcare analytics; Medical concepts; Neural networks; Representation learning

Indexed keywords

CODES (SYMBOLS); DATA MINING; HEALTH CARE; NEURAL NETWORKS;

EID: 84985025946     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2939672.2939823     Document Type: Conference Paper
Times cited : (479)

References (39)
  • 2
    • 84954340787 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. PAMI, 2013.
    • (2013) PAMI
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 10
    • 85014902153 scopus 로고    scopus 로고
    • Learning lowdimensional representations of medical concepts
    • Y. Choi, C. Y.-I. Chiu, and D. Sontag. Learning lowdimensional representations of medical concepts. 2016. To be submitted to AMIA CRI.
    • (2016) AMIA CRI
    • Choi, Y.1    Chiu, C.Y.-I.2    Sontag, D.3
  • 11
    • 0020060712 scopus 로고
    • Epileptic seizures in cerebral arterial occlusive disease
    • L. Cocito, E. Favale, and L. Reni. Epileptic seizures in cerebral arterial occlusive disease. Stroke, 1982.
    • (1982) Stroke
    • Cocito, L.1    Favale, E.2    Reni, L.3
  • 12
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML, 2008.
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 15
    • 0018958968 scopus 로고
    • Lung volumes and mechanics of breathing in tetraplegics
    • J. Forner. Lung volumes and mechanics of breathing in tetraplegics. Spinal Cord, 18 (4): 258-266, 1980.
    • (1980) Spinal Cord , vol.18 , Issue.4 , pp. 258-266
    • Forner, J.1
  • 18
    • 84937834963 scopus 로고    scopus 로고
    • A multiplicative model for learning distributed text-based attribute representations
    • R. Kiros, R. Zemel, and R. R. Salakhutdinov. A multiplicative model for learning distributed text-based attribute representations. In NIPS, 2014.
    • (2014) NIPS
    • Kiros, R.1    Zemel, R.2    Salakhutdinov, R.R.3
  • 20
    • 84919829999 scopus 로고    scopus 로고
    • Distributed representations of sentences and documents
    • Q. Le and T. Mikolov. Distributed representations of sentences and documents. In ICML, 2014.
    • (2014) ICML
    • Le, Q.1    Mikolov, T.2
  • 21
    • 84890478042 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Q. V. Le. Building high-level features using large scale unsupervised learning. In ICASSP, 2013.
    • (2013) ICASSP
    • Le, Q.V.1
  • 23
    • 85083954099 scopus 로고    scopus 로고
    • Learning to diagnose with lstm recurrent neural networks
    • Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell. Learning to diagnose with lstm recurrent neural networks. In ICLR, 2016.
    • (2016) ICLR
    • Lipton, Z.C.1    Kale, D.C.2    Elkan, C.3    Wetzell, R.4
  • 26
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 28
    • 84858779990 scopus 로고    scopus 로고
    • A scalable hierarchical distributed language model
    • A. Mnih and G. E. Hinton. A scalable hierarchical distributed language model. In NIPS, 2009.
    • (2009) NIPS
    • Mnih, A.1    Hinton, G.E.2
  • 30
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. EMNLP, 2014.
    • (2014) EMNLP
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 31
    • 84905251531 scopus 로고    scopus 로고
    • Improved musical onset detection with convolutional neural networks
    • J. Schluter and S. Bock. Improved musical onset detection with convolutional neural networks. In ICASSP, 2014.
    • (2014) ICASSP
    • Schluter, J.1    Bock, S.2
  • 34
    • 84879940846 scopus 로고    scopus 로고
    • Supervised patient similarity measure of heterogeneous patient records
    • J. Sun, F. Wang, J. Hu, and S. Edabollahi. Supervised patient similarity measure of heterogeneous patient records. KDD Explorations, 2012.
    • (2012) KDD Explorations
    • Sun, J.1    Wang, F.2    Hu, J.3    Edabollahi, S.4
  • 35
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general method for semi-supervised learning. In ACL, 2010.
    • (2010) ACL
    • Turian, J.1    Ratinov, L.2    Bengio, Y.3
  • 36
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 37
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 2010.
    • (2010) JMLR
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 38
    • 84953301379 scopus 로고    scopus 로고
    • Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records
    • Y. Wang, K. Ng, R. J. Byrd, J. Hu, S. Ebadollahi, Z. Daar, C. deFilippi, S. R. Steinhubl, and W. F. Stewart. Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records. In EMBC, 2015.
    • (2015) EMBC
    • Wang, Y.1    Ng, K.2    Byrd, R.J.3    Hu, J.4    Ebadollahi, S.5    Daar, Z.6    DeFilippi, C.7    Steinhubl, S.R.8    Stewart, W.F.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.