메뉴 건너뛰기




Volumn 19, Issue , 2017, Pages 22-29

β-Cell signalling and insulin secretagogues: A path for improved diabetes therapy

Author keywords

Epac2A; glutamate; in silico similarity search; incretin; KATP channel; sulfonylurea; cell

Indexed keywords

ANTIDIABETIC AGENT; DIPEPTIDYL PEPTIDASE IV INHIBITOR; G PROTEIN COUPLED RECEPTOR 40; GLIBENCLAMIDE; GLICLAZIDE; GLIMEPIRIDE; GLUCOKINASE ACTIVATOR; INCRETIN; INSULIN; MITIGLINIDE; NATEGLINIDE; PROTEIN COUPLED RECEPTOR 40 AGONIST; REPAGLINIDE; SITAGLIPTIN; SULFONYLUREA DERIVATIVE; UNCLASSIFIED DRUG; NEW DRUG;

EID: 85028997896     PISSN: 14628902     EISSN: 14631326     Source Type: Journal    
DOI: 10.1111/dom.12995     Document Type: Review
Times cited : (56)

References (77)
  • 1
    • 0033760442 scopus 로고    scopus 로고
    • Triggering and amplifying pathways of regulation of insulin secretion by glucose
    • Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49:1751-1760.
    • (2000) Diabetes , vol.49 , pp. 1751-1760
    • Henquin, J.C.1
  • 2
    • 67349176115 scopus 로고    scopus 로고
    • Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes
    • Ahren B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov. 2009;8:369-385.
    • (2009) Nat Rev Drug Discov , vol.8 , pp. 369-385
    • Ahren, B.1
  • 3
    • 25444520038 scopus 로고    scopus 로고
    • PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis
    • Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev. 2005;85:1303-1342.
    • (2005) Physiol Rev , vol.85 , pp. 1303-1342
    • Seino, S.1    Shibasaki, T.2
  • 4
    • 0028972501 scopus 로고
    • Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor
    • Inagaki N, Gonoi T, Clement JPt, et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995;270:1166-1170.
    • (1995) Science , vol.270 , pp. 1166-1170
    • Inagaki, N.1    Gonoi, T.2    Clement, J.P.3
  • 5
    • 0029561629 scopus 로고
    • Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle
    • Sakura H, Ammala C, Smith PA, Gribble FM, Ashcroft FM. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett. 1995;377:338-344.
    • (1995) FEBS Lett , vol.377 , pp. 338-344
    • Sakura, H.1    Ammala, C.2    Smith, P.A.3    Gribble, F.M.4    Ashcroft, F.M.5
  • 6
    • 0031677781 scopus 로고    scopus 로고
    • Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels
    • Gribble FM, Tucker SJ, Seino S, Ashcroft FM. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes. 1998;47:1412-1418.
    • (1998) Diabetes , vol.47 , pp. 1412-1418
    • Gribble, F.M.1    Tucker, S.J.2    Seino, S.3    Ashcroft, F.M.4
  • 8
    • 0033037098 scopus 로고    scopus 로고
    • ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies
    • Seino S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol. 1999;61:337-362.
    • (1999) Annu Rev Physiol , vol.61 , pp. 337-362
    • Seino, S.1
  • 9
    • 9444284451 scopus 로고    scopus 로고
    • The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium
    • Quast U, Stephan D, Bieger S, Russ U. The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium. Diabetes. 2004;53(suppl 3):S156-S164.
    • (2004) Diabetes , vol.53 , pp. S156-S164
    • Quast, U.1    Stephan, D.2    Bieger, S.3    Russ, U.4
  • 10
    • 0344258473 scopus 로고    scopus 로고
    • Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel
    • Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft FM. Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes. 1999;48:1341-1347.
    • (1999) Diabetes , vol.48 , pp. 1341-1347
    • Ashfield, R.1    Gribble, F.M.2    Ashcroft, S.J.3    Ashcroft, F.M.4
  • 11
    • 0035876102 scopus 로고    scopus 로고
    • Molecular structure of the glibenclamide binding site of the beta-cell K(ATP) channel
    • Mikhailov MV, Mikhailova EA, Ashcroft SJ. Molecular structure of the glibenclamide binding site of the beta-cell K(ATP) channel. FEBS Lett. 2001;499:154-160.
    • (2001) FEBS Lett , vol.499 , pp. 154-160
    • Mikhailov, M.V.1    Mikhailova, E.A.2    Ashcroft, S.J.3
  • 12
    • 33846059977 scopus 로고    scopus 로고
    • Defining a binding pocket for sulfonylureas in ATP-sensitive potassium channels
    • Vila-Carriles WH, Zhao G, Bryan J. Defining a binding pocket for sulfonylureas in ATP-sensitive potassium channels. FASEB J. 2007;21:18-25.
    • (2007) FASEB J , vol.21 , pp. 18-25
    • Vila-Carriles, W.H.1    Zhao, G.2    Bryan, J.3
  • 13
    • 85009170650 scopus 로고    scopus 로고
    • Structure of a pancreatic ATP-sensitive potassium channel
    • Li N, Wu JX, Ding D, Cheng J, Gao N, Chen L. Structure of a pancreatic ATP-sensitive potassium channel. Cell. 2017;168:101-110.e110.
    • (2017) Cell , vol.168 , pp. 101-110
    • Li, N.1    Wu, J.X.2    Ding, D.3    Cheng, J.4    Gao, N.5    Chen, L.6
  • 14
    • 85014959849 scopus 로고    scopus 로고
    • Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating
    • Martin GM, Yoshioka C, Rex EA, et al. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. Elife. 2017;6:e24149.
    • (2017) Elife , vol.6
    • Martin, G.M.1    Yoshioka, C.2    Rex, E.A.3
  • 15
    • 68149136367 scopus 로고    scopus 로고
    • The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs
    • Zhang CL, Katoh M, Shibasaki T, et al. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science. 2009;325:607-610.
    • (2009) Science , vol.325 , pp. 607-610
    • Zhang, C.L.1    Katoh, M.2    Shibasaki, T.3
  • 16
    • 0035824548 scopus 로고    scopus 로고
    • Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion
    • Kashima Y, Miki T, Shibasaki T, et al. Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem. 2001;276:46046-46053.
    • (2001) J Biol Chem , vol.276 , pp. 46046-46053
    • Kashima, Y.1    Miki, T.2    Shibasaki, T.3
  • 17
    • 0033769693 scopus 로고    scopus 로고
    • cAMP-GEFII is a direct target of cAMP in regulated exocytosis
    • Ozaki N, Shibasaki T, Kashima Y, et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol. 2000;2:805-811.
    • (2000) Nat Cell Biol , vol.2 , pp. 805-811
    • Ozaki, N.1    Shibasaki, T.2    Kashima, Y.3
  • 18
    • 84886737102 scopus 로고    scopus 로고
    • Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A
    • Takahashi T, Shibasaki T, Takahashi H, et al. Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A. Sci Signal. 2013;6:ra94.
    • (2013) Sci Signal , vol.6 , pp. ra94
    • Takahashi, T.1    Shibasaki, T.2    Takahashi, H.3
  • 19
    • 84908507287 scopus 로고    scopus 로고
    • Cooperation between cAMP signalling and sulfonylurea in insulin secretion
    • Shibasaki T, Takahashi T, Takahashi H, Seino S. Cooperation between cAMP signalling and sulfonylurea in insulin secretion. Diabetes Obes Metab. 2014;16(suppl 1):118-125.
    • (2014) Diabetes Obes Metab , vol.16 , pp. 118-125
    • Shibasaki, T.1    Takahashi, T.2    Takahashi, H.3    Seino, S.4
  • 20
    • 34250783198 scopus 로고    scopus 로고
    • Nateglinide and mitiglinide, but not sulfonylureas, induce insulin secretion through a mechanism mediated by calcium release from endoplasmic reticulum
    • Shigeto M, Katsura M, Matsuda M, Ohkuma S, Kaku K. Nateglinide and mitiglinide, but not sulfonylureas, induce insulin secretion through a mechanism mediated by calcium release from endoplasmic reticulum. J Pharmacol Exp Ther. 2007;322:1-7.
    • (2007) J Pharmacol Exp Ther , vol.322 , pp. 1-7
    • Shigeto, M.1    Katsura, M.2    Matsuda, M.3    Ohkuma, S.4    Kaku, K.5
  • 21
    • 84878360808 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: incretin actions beyond the pancreas
    • Seino Y, Yabe D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: incretin actions beyond the pancreas. J Diabetes Investig. 2013;4:108-130.
    • (2013) J Diabetes Investig , vol.4 , pp. 108-130
    • Seino, Y.1    Yabe, D.2
  • 22
    • 33846006173 scopus 로고    scopus 로고
    • The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes
    • Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696-1705.
    • (2006) Lancet , vol.368 , pp. 1696-1705
    • Drucker, D.J.1    Nauck, M.A.2
  • 23
    • 58149467276 scopus 로고    scopus 로고
    • Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes
    • Hojberg PV, Vilsboll T, Rabol R, et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009;52:199-207.
    • (2009) Diabetologia , vol.52 , pp. 199-207
    • Hojberg, P.V.1    Vilsboll, T.2    Rabol, R.3
  • 24
    • 33751241720 scopus 로고    scopus 로고
    • Epac proteins: multi-purpose cAMP targets
    • Bos JL. Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci. 2006;31:680-686.
    • (2006) Trends Biochem Sci , vol.31 , pp. 680-686
    • Bos, J.L.1
  • 25
    • 84948799297 scopus 로고    scopus 로고
    • Structure and functional roles of Epac2 (Rapgef4)
    • Sugawara K, Shibasaki T, Takahashi H, Seino S. Structure and functional roles of Epac2 (Rapgef4). Gene. 2016;575:577-583.
    • (2016) Gene , vol.575 , pp. 577-583
    • Sugawara, K.1    Shibasaki, T.2    Takahashi, H.3    Seino, S.4
  • 26
    • 64549105338 scopus 로고    scopus 로고
    • Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function
    • Niimura M, Miki T, Shibasaki T, Fujimoto W, Iwanaga T, Seino S. Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function. J Cell Physiol. 2009;219:652-658.
    • (2009) J Cell Physiol , vol.219 , pp. 652-658
    • Niimura, M.1    Miki, T.2    Shibasaki, T.3    Fujimoto, W.4    Iwanaga, T.5    Seino, S.6
  • 27
    • 0034759763 scopus 로고    scopus 로고
    • Characterization of the gene EPAC2: structure, chromosomal localization, tissue expression, and identification of the liver-specific isoform
    • Ueno H, Shibasaki T, Iwanaga T, et al. Characterization of the gene EPAC2: structure, chromosomal localization, tissue expression, and identification of the liver-specific isoform. Genomics. 2001;78:91-98.
    • (2001) Genomics , vol.78 , pp. 91-98
    • Ueno, H.1    Shibasaki, T.2    Iwanaga, T.3
  • 28
    • 37649002935 scopus 로고    scopus 로고
    • Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP
    • Shibasaki T, Takahashi H, Miki T, et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A. 2007;104:19333-19338.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 19333-19338
    • Shibasaki, T.1    Takahashi, H.2    Miki, T.3
  • 29
    • 79957904659 scopus 로고    scopus 로고
    • Rim2alpha determines docking and priming states in insulin granule exocytosis
    • Yasuda T, Shibasaki T, Minami K, et al. Rim2alpha determines docking and priming states in insulin granule exocytosis. Cell Metab. 2010;12:117-129.
    • (2010) Cell Metab , vol.12 , pp. 117-129
    • Yasuda, T.1    Shibasaki, T.2    Minami, K.3
  • 30
    • 0037184610 scopus 로고    scopus 로고
    • Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2. Piccolo complex in cAMP-dependent exocytosis
    • Fujimoto K, Shibasaki T, Yokoi N, et al. Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2. Piccolo complex in cAMP-dependent exocytosis. J Biol Chem. 2002;277:50497-50502.
    • (2002) J Biol Chem , vol.277 , pp. 50497-50502
    • Fujimoto, K.1    Shibasaki, T.2    Yokoi, N.3
  • 31
    • 1542289732 scopus 로고    scopus 로고
    • Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis
    • Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y, Seino S. Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis. J Biol Chem. 2004;279:7956-7961.
    • (2004) J Biol Chem , vol.279 , pp. 7956-7961
    • Shibasaki, T.1    Sunaga, Y.2    Fujimoto, K.3    Kashima, Y.4    Seino, S.5
  • 32
    • 33744939752 scopus 로고    scopus 로고
    • cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells
    • Kang G, Chepurny OG, Malester B, et al. cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells. J Physiol. 2006;573:595-609.
    • (2006) J Physiol , vol.573 , pp. 595-609
    • Kang, G.1    Chepurny, O.G.2    Malester, B.3
  • 33
    • 0035886966 scopus 로고    scopus 로고
    • cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+ -induced Ca2+ release in INS-1 pancreatic beta-cells
    • Kang G, Chepurny OG, Holz GG. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+ -induced Ca2+ release in INS-1 pancreatic beta-cells. J Physiol. 2001;536:375-385.
    • (2001) J Physiol , vol.536 , pp. 375-385
    • Kang, G.1    Chepurny, O.G.2    Holz, G.G.3
  • 34
    • 0035735452 scopus 로고    scopus 로고
    • A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase
    • Schmidt M, Evellin S, Weernink PA, et al. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol. 2001;3:1020-1024.
    • (2001) Nat Cell Biol , vol.3 , pp. 1020-1024
    • Schmidt, M.1    Evellin, S.2    Weernink, P.A.3
  • 35
    • 79955793555 scopus 로고    scopus 로고
    • Phospholipase C-epsilon links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans
    • Dzhura I, Chepurny OG, Leech CA, et al. Phospholipase C-epsilon links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans. Islets. 2011;3:121-128.
    • (2011) Islets , vol.3 , pp. 121-128
    • Dzhura, I.1    Chepurny, O.G.2    Leech, C.A.3
  • 36
    • 78650090455 scopus 로고    scopus 로고
    • Epac2-dependent mobilization of intracellular Ca(2)+ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in beta-cells of phospholipase C-epsilon knockout mice
    • Dzhura I, Chepurny OG, Kelley GG, et al. Epac2-dependent mobilization of intracellular Ca(2)+ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in beta-cells of phospholipase C-epsilon knockout mice. J Physiol. 2010;588:4871-4889.
    • (2010) J Physiol , vol.588 , pp. 4871-4889
    • Dzhura, I.1    Chepurny, O.G.2    Kelley, G.G.3
  • 37
    • 0037153376 scopus 로고    scopus 로고
    • Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon
    • Song C, Satoh T, Edamatsu H, et al. Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon. Oncogene. 2002;21:8105-8113.
    • (2002) Oncogene , vol.21 , pp. 8105-8113
    • Song, C.1    Satoh, T.2    Edamatsu, H.3
  • 39
    • 0029149848 scopus 로고
    • Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization
    • Gromada J, Dissing S, Bokvist K, et al. Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes. 1995;44:767-774.
    • (1995) Diabetes , vol.44 , pp. 767-774
    • Gromada, J.1    Dissing, S.2    Bokvist, K.3
  • 40
    • 0033553547 scopus 로고    scopus 로고
    • cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37)
    • Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF. cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J Biol Chem. 1999;274:14147-14156.
    • (1999) J Biol Chem , vol.274 , pp. 14147-14156
    • Holz, G.G.1    Leech, C.A.2    Heller, R.S.3    Castonguay, M.4    Habener, J.F.5
  • 41
    • 0037424363 scopus 로고    scopus 로고
    • Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells
    • Kang G, Joseph JW, Chepurny OG, et al. Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J Biol Chem. 2003;278:8279-8285.
    • (2003) J Biol Chem , vol.278 , pp. 8279-8285
    • Kang, G.1    Joseph, J.W.2    Chepurny, O.G.3
  • 42
    • 84862945912 scopus 로고    scopus 로고
    • Glucagon-like peptide-1 enhances glucokinase activity in pancreatic beta-cells through the association of Epac2 with Rim2 and Rab3A
    • Park JH, Kim SJ, Park SH, et al. Glucagon-like peptide-1 enhances glucokinase activity in pancreatic beta-cells through the association of Epac2 with Rim2 and Rab3A. Endocrinology. 2012;153:574-582.
    • (2012) Endocrinology , vol.153 , pp. 574-582
    • Park, J.H.1    Kim, S.J.2    Park, S.H.3
  • 43
    • 84919685379 scopus 로고    scopus 로고
    • Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion
    • Gheni G, Ogura M, Iwasaki M, et al. Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep. 2014;9:661-673.
    • (2014) Cell Rep , vol.9 , pp. 661-673
    • Gheni, G.1    Ogura, M.2    Iwasaki, M.3
  • 44
    • 0033548138 scopus 로고    scopus 로고
    • Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion
    • Eto K, Tsubamoto Y, Terauchi Y, et al. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science. 1999;283:981-985.
    • (1999) Science , vol.283 , pp. 981-985
    • Eto, K.1    Tsubamoto, Y.2    Terauchi, Y.3
  • 45
    • 0020093110 scopus 로고
    • Evidence for the malate aspartate shuttle in pancreatic islets
    • MacDonald MJ. Evidence for the malate aspartate shuttle in pancreatic islets. Arch Biochem Biophys. 1982;213:643-649.
    • (1982) Arch Biochem Biophys , vol.213 , pp. 643-649
    • MacDonald, M.J.1
  • 46
    • 79959446952 scopus 로고    scopus 로고
    • Vesicular neurotransmitter transporter: bioenergetics and regulation of glutamate transport
    • Omote H, Miyaji T, Juge N, Moriyama Y. Vesicular neurotransmitter transporter: bioenergetics and regulation of glutamate transport. Biochemistry. 2011;50:5558-5565.
    • (2011) Biochemistry , vol.50 , pp. 5558-5565
    • Omote, H.1    Miyaji, T.2    Juge, N.3    Moriyama, Y.4
  • 47
    • 0033540037 scopus 로고    scopus 로고
    • Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis
    • Maechler P, Wollheim CB. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature. 1999;402:685-689.
    • (1999) Nature , vol.402 , pp. 685-689
    • Maechler, P.1    Wollheim, C.B.2
  • 48
    • 0037031896 scopus 로고    scopus 로고
    • The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related
    • Bertrand G, Ishiyama N, Nenquin M, Ravier MA, Henquin JC. The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J Biol Chem. 2002;277:32883-32891.
    • (2002) J Biol Chem , vol.277 , pp. 32883-32891
    • Bertrand, G.1    Ishiyama, N.2    Nenquin, M.3    Ravier, M.A.4    Henquin, J.C.5
  • 49
    • 0034602141 scopus 로고    scopus 로고
    • Glutamate is not a messenger in insulin secretion
    • MacDonald MJ, Fahien LA. Glutamate is not a messenger in insulin secretion. J Biol Chem. 2000;275:34025-34027.
    • (2000) J Biol Chem , vol.275 , pp. 34025-34027
    • MacDonald, M.J.1    Fahien, L.A.2
  • 50
    • 84926685729 scopus 로고    scopus 로고
    • Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment
    • Marquard J, Otter S, Welters A, et al. Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med. 2015;21:363-372.
    • (2015) Nat Med , vol.21 , pp. 363-372
    • Marquard, J.1    Otter, S.2    Welters, A.3
  • 51
    • 84904597331 scopus 로고    scopus 로고
    • Factors influencing the durability of the glucose-lowering effect of sitagliptin combined with a sulfonylurea
    • Kubota A, Yabe D, Kanamori A, et al. Factors influencing the durability of the glucose-lowering effect of sitagliptin combined with a sulfonylurea. J Diabetes Investig. 2014;5:445-448.
    • (2014) J Diabetes Investig , vol.5 , pp. 445-448
    • Kubota, A.1    Yabe, D.2    Kanamori, A.3
  • 52
    • 62449129181 scopus 로고    scopus 로고
    • Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU)
    • Marre M, Shaw J, Brandle M, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med. 2009;26:268-278.
    • (2009) Diabet Med , vol.26 , pp. 268-278
    • Marre, M.1    Shaw, J.2    Brandle, M.3
  • 53
    • 84908569527 scopus 로고    scopus 로고
    • Dipeptidyl peptidase-4 inhibitors and sulfonylureas for type 2 diabetes: friend or foe?
    • Yabe D, Seino Y. Dipeptidyl peptidase-4 inhibitors and sulfonylureas for type 2 diabetes: friend or foe? J Diabetes Investig. 2014;5:475-477.
    • (2014) J Diabetes Investig , vol.5 , pp. 475-477
    • Yabe, D.1    Seino, Y.2
  • 54
    • 84928907433 scopus 로고    scopus 로고
    • Role of Epac2A/Rap1 signaling in interplay between incretin and sulfonylurea in insulin secretion
    • Takahashi H, Shibasaki T, Park JH, et al. Role of Epac2A/Rap1 signaling in interplay between incretin and sulfonylurea in insulin secretion. Diabetes. 2015;64:1262-1272.
    • (2015) Diabetes , vol.64 , pp. 1262-1272
    • Takahashi, H.1    Shibasaki, T.2    Park, J.H.3
  • 55
    • 33847021177 scopus 로고    scopus 로고
    • Sulfonylurea compounds uncouple the glucose dependence of the insulinotropic effect of glucagon-like peptide 1
    • de Heer J, Holst JJ. Sulfonylurea compounds uncouple the glucose dependence of the insulinotropic effect of glucagon-like peptide 1. Diabetes. 2007;56:438-443.
    • (2007) Diabetes , vol.56 , pp. 438-443
    • de Heer, J.1    Holst, J.J.2
  • 56
    • 0014594153 scopus 로고
    • Stimulation of insulin secretion by infusion of free fatty acids
    • Crespin SR, Greenough WB 3rd, Steinberg D. Stimulation of insulin secretion by infusion of free fatty acids. J Clin Invest. 1969;48:1934-1943.
    • (1969) J Clin Invest , vol.48 , pp. 1934-1943
    • Crespin, S.R.1    Greenough, W.B.2    Steinberg, D.3
  • 57
    • 0031683543 scopus 로고    scopus 로고
    • Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans
    • Dobbins RL, Chester MW, Daniels MB, McGarry JD, Stein DT. Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes. 1998;47:1613-1618.
    • (1998) Diabetes , vol.47 , pp. 1613-1618
    • Dobbins, R.L.1    Chester, M.W.2    Daniels, M.B.3    McGarry, J.D.4    Stein, D.T.5
  • 58
    • 0029888870 scopus 로고    scopus 로고
    • Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat
    • Stein DT, Esser V, Stevenson BE, et al. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest. 1996;97:2728-2735.
    • (1996) J Clin Invest , vol.97 , pp. 2728-2735
    • Stein, D.T.1    Esser, V.2    Stevenson, B.E.3
  • 59
    • 0037838892 scopus 로고    scopus 로고
    • The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids
    • Briscoe CP, Tadayyon M, Andrews JL, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003;278:11303-11311.
    • (2003) J Biol Chem , vol.278 , pp. 11303-11311
    • Briscoe, C.P.1    Tadayyon, M.2    Andrews, J.L.3
  • 60
    • 0037434991 scopus 로고    scopus 로고
    • Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40
    • Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003;422:173-176.
    • (2003) Nature , vol.422 , pp. 173-176
    • Itoh, Y.1    Kawamata, Y.2    Harada, M.3
  • 61
    • 34047177401 scopus 로고    scopus 로고
    • GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo
    • Latour MG, Alquier T, Oseid E, et al. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes. 2007;56:1087-1094.
    • (2007) Diabetes , vol.56 , pp. 1087-1094
    • Latour, M.G.1    Alquier, T.2    Oseid, E.3
  • 62
    • 33745607930 scopus 로고    scopus 로고
    • Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules
    • Briscoe CP, Peat AJ, McKeown SC, et al. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol. 2006;148:619-628.
    • (2006) Br J Pharmacol , vol.148 , pp. 619-628
    • Briscoe, C.P.1    Peat, A.J.2    McKeown, S.C.3
  • 63
    • 65549114432 scopus 로고    scopus 로고
    • Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice
    • Nagasumi K, Esaki R, Iwachidow K, et al. Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes. 2009;58:1067-1076.
    • (2009) Diabetes , vol.58 , pp. 1067-1076
    • Nagasumi, K.1    Esaki, R.2    Iwachidow, K.3
  • 64
    • 84931956985 scopus 로고    scopus 로고
    • GPR40 agonists for the treatment of type 2 diabetes: life after ‘TAKing’ a hit
    • Mancini AD, Poitout V. GPR40 agonists for the treatment of type 2 diabetes: life after ‘TAKing’ a hit. Diabetes Obes Metab. 2015;17:622-629.
    • (2015) Diabetes Obes Metab , vol.17 , pp. 622-629
    • Mancini, A.D.1    Poitout, V.2
  • 65
    • 84866129127 scopus 로고    scopus 로고
    • G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1
    • Ferdaoussi M, Bergeron V, Zarrouki B, et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia. 2012;55:2682-2692.
    • (2012) Diabetologia , vol.55 , pp. 2682-2692
    • Ferdaoussi, M.1    Bergeron, V.2    Zarrouki, B.3
  • 66
    • 84953306839 scopus 로고    scopus 로고
    • G protein-coupled receptors: signalling and regulation by lipid agonists for improved glucose homoeostasis
    • Moran BM, Flatt PR, McKillop AM. G protein-coupled receptors: signalling and regulation by lipid agonists for improved glucose homoeostasis. Acta Diabetol. 2016;53:177-188.
    • (2016) Acta Diabetol , vol.53 , pp. 177-188
    • Moran, B.M.1    Flatt, P.R.2    McKillop, A.M.3
  • 67
    • 84907221192 scopus 로고    scopus 로고
    • High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875
    • Srivastava A, Yano J, Hirozane Y, et al. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature. 2014;513:124-127.
    • (2014) Nature , vol.513 , pp. 124-127
    • Srivastava, A.1    Yano, J.2    Hirozane, Y.3
  • 68
    • 0037624071 scopus 로고    scopus 로고
    • Allosteric activators of glucokinase: potential role in diabetes therapy
    • Grimsby J, Sarabu R, Corbett WL, et al. Allosteric activators of glucokinase: potential role in diabetes therapy. Science. 2003;301:370-373.
    • (2003) Science , vol.301 , pp. 370-373
    • Grimsby, J.1    Sarabu, R.2    Corbett, W.L.3
  • 69
    • 23844550012 scopus 로고    scopus 로고
    • A novel glucokinase activator modulates pancreatic islet and hepatocyte function
    • Efanov AM, Barrett DG, Brenner MB, et al. A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology. 2005;146:3696-3701.
    • (2005) Endocrinology , vol.146 , pp. 3696-3701
    • Efanov, A.M.1    Barrett, D.G.2    Brenner, M.B.3
  • 70
    • 33845979134 scopus 로고    scopus 로고
    • An allosteric activator of glucokinase impairs the interaction of glucokinase and glucokinase regulatory protein and regulates glucose metabolism
    • Futamura M, Hosaka H, Kadotani A, et al. An allosteric activator of glucokinase impairs the interaction of glucokinase and glucokinase regulatory protein and regulates glucose metabolism. J Biol Chem. 2006;281:37668-37674.
    • (2006) J Biol Chem , vol.281 , pp. 37668-37674
    • Futamura, M.1    Hosaka, H.2    Kadotani, A.3
  • 71
    • 34247862169 scopus 로고    scopus 로고
    • Glucokinase activator PSN-GK1 displays enhanced antihyperglycaemic and insulinotropic actions
    • Fyfe MC, White JR, Taylor A, et al. Glucokinase activator PSN-GK1 displays enhanced antihyperglycaemic and insulinotropic actions. Diabetologia. 2007;50:1277-1287.
    • (2007) Diabetologia , vol.50 , pp. 1277-1287
    • Fyfe, M.C.1    White, J.R.2    Taylor, A.3
  • 72
    • 34249683855 scopus 로고    scopus 로고
    • Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a glucokinase activator
    • Johnson D, Shepherd RM, Gill D, Gorman T, Smith DM, Dunne MJ. Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a glucokinase activator. Diabetes. 2007;56:1694-1702.
    • (2007) Diabetes , vol.56 , pp. 1694-1702
    • Johnson, D.1    Shepherd, R.M.2    Gill, D.3    Gorman, T.4    Smith, D.M.5    Dunne, M.J.6
  • 73
    • 67649635606 scopus 로고    scopus 로고
    • Impact of small-molecule glucokinase activator on glucose metabolism and beta-cell mass
    • Nakamura A, Terauchi Y, Ohyama S, et al. Impact of small-molecule glucokinase activator on glucose metabolism and beta-cell mass. Endocrinology. 2009;150:1147-1154.
    • (2009) Endocrinology , vol.150 , pp. 1147-1154
    • Nakamura, A.1    Terauchi, Y.2    Ohyama, S.3
  • 74
    • 81555210580 scopus 로고    scopus 로고
    • Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes
    • Meininger GE, Scott R, Alba M, et al. Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes. Diabetes Care. 2011;34:2560-2566.
    • (2011) Diabetes Care , vol.34 , pp. 2560-2566
    • Meininger, G.E.1    Scott, R.2    Alba, M.3
  • 75
    • 84879796512 scopus 로고    scopus 로고
    • Dose-ranging study with the glucokinase activator AZD1656 in patients with type 2 diabetes mellitus on metformin
    • Wilding JP, Leonsson-Zachrisson M, Wessman C, Johnsson E. Dose-ranging study with the glucokinase activator AZD1656 in patients with type 2 diabetes mellitus on metformin. Diabetes Obes Metab. 2013;15:750-759.
    • (2013) Diabetes Obes Metab. , vol.15 , pp. 750-759
    • Wilding, J.P.1    Leonsson-Zachrisson, M.2    Wessman, C.3    Johnsson, E.4
  • 76
    • 84879242302 scopus 로고    scopus 로고
    • Combination of ligand- and structure-based methods in virtual screening
    • Drwal MN, Griffith R. Combination of ligand- and structure-based methods in virtual screening. Drug Discov Today Technol. 2013;10:e395-e401.
    • (2013) Drug Discov Today Technol , vol.10 , pp. e395-e401
    • Drwal, M.N.1    Griffith, R.2
  • 77
    • 84992189587 scopus 로고    scopus 로고
    • A novel diphenylthiosemicarbazide is a potential insulin secretagogue for anti-diabetic agent
    • Sugawara K, Honda K, Reien Y, et al. A novel diphenylthiosemicarbazide is a potential insulin secretagogue for anti-diabetic agent. PLoS One. 2016;11:e0164785.
    • (2016) PLoS One , vol.11
    • Sugawara, K.1    Honda, K.2    Reien, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.