-
1
-
-
0033760442
-
Triggering and amplifying pathways of regulation of insulin secretion by glucose
-
Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49:1751-1760.
-
(2000)
Diabetes
, vol.49
, pp. 1751-1760
-
-
Henquin, J.C.1
-
2
-
-
67349176115
-
Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes
-
Ahren B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov. 2009;8:369-385.
-
(2009)
Nat Rev Drug Discov
, vol.8
, pp. 369-385
-
-
Ahren, B.1
-
3
-
-
25444520038
-
PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis
-
Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev. 2005;85:1303-1342.
-
(2005)
Physiol Rev
, vol.85
, pp. 1303-1342
-
-
Seino, S.1
Shibasaki, T.2
-
4
-
-
0028972501
-
Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor
-
Inagaki N, Gonoi T, Clement JPt, et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995;270:1166-1170.
-
(1995)
Science
, vol.270
, pp. 1166-1170
-
-
Inagaki, N.1
Gonoi, T.2
Clement, J.P.3
-
5
-
-
0029561629
-
Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle
-
Sakura H, Ammala C, Smith PA, Gribble FM, Ashcroft FM. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett. 1995;377:338-344.
-
(1995)
FEBS Lett
, vol.377
, pp. 338-344
-
-
Sakura, H.1
Ammala, C.2
Smith, P.A.3
Gribble, F.M.4
Ashcroft, F.M.5
-
6
-
-
0031677781
-
Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels
-
Gribble FM, Tucker SJ, Seino S, Ashcroft FM. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes. 1998;47:1412-1418.
-
(1998)
Diabetes
, vol.47
, pp. 1412-1418
-
-
Gribble, F.M.1
Tucker, S.J.2
Seino, S.3
Ashcroft, F.M.4
-
7
-
-
0031917466
-
Toward understanding the assembly and structure of KATP channels
-
Aguilar-Bryan L, Clement JPt, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. Toward understanding the assembly and structure of KATP channels. Physiol Rev. 1998;78:227-245.
-
(1998)
Physiol Rev
, vol.78
, pp. 227-245
-
-
Aguilar-Bryan, L.1
Clement, J.P.2
Gonzalez, G.3
Kunjilwar, K.4
Babenko, A.5
Bryan, J.6
-
8
-
-
0033037098
-
ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies
-
Seino S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol. 1999;61:337-362.
-
(1999)
Annu Rev Physiol
, vol.61
, pp. 337-362
-
-
Seino, S.1
-
9
-
-
9444284451
-
The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium
-
Quast U, Stephan D, Bieger S, Russ U. The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium. Diabetes. 2004;53(suppl 3):S156-S164.
-
(2004)
Diabetes
, vol.53
, pp. S156-S164
-
-
Quast, U.1
Stephan, D.2
Bieger, S.3
Russ, U.4
-
10
-
-
0344258473
-
Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel
-
Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft FM. Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes. 1999;48:1341-1347.
-
(1999)
Diabetes
, vol.48
, pp. 1341-1347
-
-
Ashfield, R.1
Gribble, F.M.2
Ashcroft, S.J.3
Ashcroft, F.M.4
-
11
-
-
0035876102
-
Molecular structure of the glibenclamide binding site of the beta-cell K(ATP) channel
-
Mikhailov MV, Mikhailova EA, Ashcroft SJ. Molecular structure of the glibenclamide binding site of the beta-cell K(ATP) channel. FEBS Lett. 2001;499:154-160.
-
(2001)
FEBS Lett
, vol.499
, pp. 154-160
-
-
Mikhailov, M.V.1
Mikhailova, E.A.2
Ashcroft, S.J.3
-
12
-
-
33846059977
-
Defining a binding pocket for sulfonylureas in ATP-sensitive potassium channels
-
Vila-Carriles WH, Zhao G, Bryan J. Defining a binding pocket for sulfonylureas in ATP-sensitive potassium channels. FASEB J. 2007;21:18-25.
-
(2007)
FASEB J
, vol.21
, pp. 18-25
-
-
Vila-Carriles, W.H.1
Zhao, G.2
Bryan, J.3
-
13
-
-
85009170650
-
Structure of a pancreatic ATP-sensitive potassium channel
-
Li N, Wu JX, Ding D, Cheng J, Gao N, Chen L. Structure of a pancreatic ATP-sensitive potassium channel. Cell. 2017;168:101-110.e110.
-
(2017)
Cell
, vol.168
, pp. 101-110
-
-
Li, N.1
Wu, J.X.2
Ding, D.3
Cheng, J.4
Gao, N.5
Chen, L.6
-
14
-
-
85014959849
-
Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating
-
Martin GM, Yoshioka C, Rex EA, et al. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. Elife. 2017;6:e24149.
-
(2017)
Elife
, vol.6
-
-
Martin, G.M.1
Yoshioka, C.2
Rex, E.A.3
-
15
-
-
68149136367
-
The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs
-
Zhang CL, Katoh M, Shibasaki T, et al. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science. 2009;325:607-610.
-
(2009)
Science
, vol.325
, pp. 607-610
-
-
Zhang, C.L.1
Katoh, M.2
Shibasaki, T.3
-
16
-
-
0035824548
-
Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion
-
Kashima Y, Miki T, Shibasaki T, et al. Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem. 2001;276:46046-46053.
-
(2001)
J Biol Chem
, vol.276
, pp. 46046-46053
-
-
Kashima, Y.1
Miki, T.2
Shibasaki, T.3
-
17
-
-
0033769693
-
cAMP-GEFII is a direct target of cAMP in regulated exocytosis
-
Ozaki N, Shibasaki T, Kashima Y, et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol. 2000;2:805-811.
-
(2000)
Nat Cell Biol
, vol.2
, pp. 805-811
-
-
Ozaki, N.1
Shibasaki, T.2
Kashima, Y.3
-
18
-
-
84886737102
-
Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A
-
Takahashi T, Shibasaki T, Takahashi H, et al. Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A. Sci Signal. 2013;6:ra94.
-
(2013)
Sci Signal
, vol.6
, pp. ra94
-
-
Takahashi, T.1
Shibasaki, T.2
Takahashi, H.3
-
19
-
-
84908507287
-
Cooperation between cAMP signalling and sulfonylurea in insulin secretion
-
Shibasaki T, Takahashi T, Takahashi H, Seino S. Cooperation between cAMP signalling and sulfonylurea in insulin secretion. Diabetes Obes Metab. 2014;16(suppl 1):118-125.
-
(2014)
Diabetes Obes Metab
, vol.16
, pp. 118-125
-
-
Shibasaki, T.1
Takahashi, T.2
Takahashi, H.3
Seino, S.4
-
20
-
-
34250783198
-
Nateglinide and mitiglinide, but not sulfonylureas, induce insulin secretion through a mechanism mediated by calcium release from endoplasmic reticulum
-
Shigeto M, Katsura M, Matsuda M, Ohkuma S, Kaku K. Nateglinide and mitiglinide, but not sulfonylureas, induce insulin secretion through a mechanism mediated by calcium release from endoplasmic reticulum. J Pharmacol Exp Ther. 2007;322:1-7.
-
(2007)
J Pharmacol Exp Ther
, vol.322
, pp. 1-7
-
-
Shigeto, M.1
Katsura, M.2
Matsuda, M.3
Ohkuma, S.4
Kaku, K.5
-
21
-
-
84878360808
-
Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: incretin actions beyond the pancreas
-
Seino Y, Yabe D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: incretin actions beyond the pancreas. J Diabetes Investig. 2013;4:108-130.
-
(2013)
J Diabetes Investig
, vol.4
, pp. 108-130
-
-
Seino, Y.1
Yabe, D.2
-
22
-
-
33846006173
-
The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes
-
Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696-1705.
-
(2006)
Lancet
, vol.368
, pp. 1696-1705
-
-
Drucker, D.J.1
Nauck, M.A.2
-
23
-
-
58149467276
-
Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes
-
Hojberg PV, Vilsboll T, Rabol R, et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009;52:199-207.
-
(2009)
Diabetologia
, vol.52
, pp. 199-207
-
-
Hojberg, P.V.1
Vilsboll, T.2
Rabol, R.3
-
24
-
-
33751241720
-
Epac proteins: multi-purpose cAMP targets
-
Bos JL. Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci. 2006;31:680-686.
-
(2006)
Trends Biochem Sci
, vol.31
, pp. 680-686
-
-
Bos, J.L.1
-
26
-
-
64549105338
-
Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function
-
Niimura M, Miki T, Shibasaki T, Fujimoto W, Iwanaga T, Seino S. Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function. J Cell Physiol. 2009;219:652-658.
-
(2009)
J Cell Physiol
, vol.219
, pp. 652-658
-
-
Niimura, M.1
Miki, T.2
Shibasaki, T.3
Fujimoto, W.4
Iwanaga, T.5
Seino, S.6
-
27
-
-
0034759763
-
Characterization of the gene EPAC2: structure, chromosomal localization, tissue expression, and identification of the liver-specific isoform
-
Ueno H, Shibasaki T, Iwanaga T, et al. Characterization of the gene EPAC2: structure, chromosomal localization, tissue expression, and identification of the liver-specific isoform. Genomics. 2001;78:91-98.
-
(2001)
Genomics
, vol.78
, pp. 91-98
-
-
Ueno, H.1
Shibasaki, T.2
Iwanaga, T.3
-
28
-
-
37649002935
-
Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP
-
Shibasaki T, Takahashi H, Miki T, et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A. 2007;104:19333-19338.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 19333-19338
-
-
Shibasaki, T.1
Takahashi, H.2
Miki, T.3
-
29
-
-
79957904659
-
Rim2alpha determines docking and priming states in insulin granule exocytosis
-
Yasuda T, Shibasaki T, Minami K, et al. Rim2alpha determines docking and priming states in insulin granule exocytosis. Cell Metab. 2010;12:117-129.
-
(2010)
Cell Metab
, vol.12
, pp. 117-129
-
-
Yasuda, T.1
Shibasaki, T.2
Minami, K.3
-
30
-
-
0037184610
-
Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2. Piccolo complex in cAMP-dependent exocytosis
-
Fujimoto K, Shibasaki T, Yokoi N, et al. Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2. Piccolo complex in cAMP-dependent exocytosis. J Biol Chem. 2002;277:50497-50502.
-
(2002)
J Biol Chem
, vol.277
, pp. 50497-50502
-
-
Fujimoto, K.1
Shibasaki, T.2
Yokoi, N.3
-
31
-
-
1542289732
-
Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis
-
Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y, Seino S. Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis. J Biol Chem. 2004;279:7956-7961.
-
(2004)
J Biol Chem
, vol.279
, pp. 7956-7961
-
-
Shibasaki, T.1
Sunaga, Y.2
Fujimoto, K.3
Kashima, Y.4
Seino, S.5
-
32
-
-
33744939752
-
cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells
-
Kang G, Chepurny OG, Malester B, et al. cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells. J Physiol. 2006;573:595-609.
-
(2006)
J Physiol
, vol.573
, pp. 595-609
-
-
Kang, G.1
Chepurny, O.G.2
Malester, B.3
-
33
-
-
0035886966
-
cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+ -induced Ca2+ release in INS-1 pancreatic beta-cells
-
Kang G, Chepurny OG, Holz GG. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+ -induced Ca2+ release in INS-1 pancreatic beta-cells. J Physiol. 2001;536:375-385.
-
(2001)
J Physiol
, vol.536
, pp. 375-385
-
-
Kang, G.1
Chepurny, O.G.2
Holz, G.G.3
-
34
-
-
0035735452
-
A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase
-
Schmidt M, Evellin S, Weernink PA, et al. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol. 2001;3:1020-1024.
-
(2001)
Nat Cell Biol
, vol.3
, pp. 1020-1024
-
-
Schmidt, M.1
Evellin, S.2
Weernink, P.A.3
-
35
-
-
79955793555
-
Phospholipase C-epsilon links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans
-
Dzhura I, Chepurny OG, Leech CA, et al. Phospholipase C-epsilon links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans. Islets. 2011;3:121-128.
-
(2011)
Islets
, vol.3
, pp. 121-128
-
-
Dzhura, I.1
Chepurny, O.G.2
Leech, C.A.3
-
36
-
-
78650090455
-
Epac2-dependent mobilization of intracellular Ca(2)+ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in beta-cells of phospholipase C-epsilon knockout mice
-
Dzhura I, Chepurny OG, Kelley GG, et al. Epac2-dependent mobilization of intracellular Ca(2)+ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in beta-cells of phospholipase C-epsilon knockout mice. J Physiol. 2010;588:4871-4889.
-
(2010)
J Physiol
, vol.588
, pp. 4871-4889
-
-
Dzhura, I.1
Chepurny, O.G.2
Kelley, G.G.3
-
37
-
-
0037153376
-
Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon
-
Song C, Satoh T, Edamatsu H, et al. Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon. Oncogene. 2002;21:8105-8113.
-
(2002)
Oncogene
, vol.21
, pp. 8105-8113
-
-
Song, C.1
Satoh, T.2
Edamatsu, H.3
-
38
-
-
33750730215
-
Cell physiology of cAMP sensor Epac
-
Holz GG, Kang G, Harbeck M, Roe MW, Chepurny OG. Cell physiology of cAMP sensor Epac. J Physiol. 2006;577:5-15.
-
(2006)
J Physiol
, vol.577
, pp. 5-15
-
-
Holz, G.G.1
Kang, G.2
Harbeck, M.3
Roe, M.W.4
Chepurny, O.G.5
-
39
-
-
0029149848
-
Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization
-
Gromada J, Dissing S, Bokvist K, et al. Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes. 1995;44:767-774.
-
(1995)
Diabetes
, vol.44
, pp. 767-774
-
-
Gromada, J.1
Dissing, S.2
Bokvist, K.3
-
40
-
-
0033553547
-
cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37)
-
Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF. cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J Biol Chem. 1999;274:14147-14156.
-
(1999)
J Biol Chem
, vol.274
, pp. 14147-14156
-
-
Holz, G.G.1
Leech, C.A.2
Heller, R.S.3
Castonguay, M.4
Habener, J.F.5
-
41
-
-
0037424363
-
Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells
-
Kang G, Joseph JW, Chepurny OG, et al. Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J Biol Chem. 2003;278:8279-8285.
-
(2003)
J Biol Chem
, vol.278
, pp. 8279-8285
-
-
Kang, G.1
Joseph, J.W.2
Chepurny, O.G.3
-
42
-
-
84862945912
-
Glucagon-like peptide-1 enhances glucokinase activity in pancreatic beta-cells through the association of Epac2 with Rim2 and Rab3A
-
Park JH, Kim SJ, Park SH, et al. Glucagon-like peptide-1 enhances glucokinase activity in pancreatic beta-cells through the association of Epac2 with Rim2 and Rab3A. Endocrinology. 2012;153:574-582.
-
(2012)
Endocrinology
, vol.153
, pp. 574-582
-
-
Park, J.H.1
Kim, S.J.2
Park, S.H.3
-
43
-
-
84919685379
-
Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion
-
Gheni G, Ogura M, Iwasaki M, et al. Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep. 2014;9:661-673.
-
(2014)
Cell Rep
, vol.9
, pp. 661-673
-
-
Gheni, G.1
Ogura, M.2
Iwasaki, M.3
-
44
-
-
0033548138
-
Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion
-
Eto K, Tsubamoto Y, Terauchi Y, et al. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science. 1999;283:981-985.
-
(1999)
Science
, vol.283
, pp. 981-985
-
-
Eto, K.1
Tsubamoto, Y.2
Terauchi, Y.3
-
45
-
-
0020093110
-
Evidence for the malate aspartate shuttle in pancreatic islets
-
MacDonald MJ. Evidence for the malate aspartate shuttle in pancreatic islets. Arch Biochem Biophys. 1982;213:643-649.
-
(1982)
Arch Biochem Biophys
, vol.213
, pp. 643-649
-
-
MacDonald, M.J.1
-
46
-
-
79959446952
-
Vesicular neurotransmitter transporter: bioenergetics and regulation of glutamate transport
-
Omote H, Miyaji T, Juge N, Moriyama Y. Vesicular neurotransmitter transporter: bioenergetics and regulation of glutamate transport. Biochemistry. 2011;50:5558-5565.
-
(2011)
Biochemistry
, vol.50
, pp. 5558-5565
-
-
Omote, H.1
Miyaji, T.2
Juge, N.3
Moriyama, Y.4
-
47
-
-
0033540037
-
Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis
-
Maechler P, Wollheim CB. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature. 1999;402:685-689.
-
(1999)
Nature
, vol.402
, pp. 685-689
-
-
Maechler, P.1
Wollheim, C.B.2
-
48
-
-
0037031896
-
The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related
-
Bertrand G, Ishiyama N, Nenquin M, Ravier MA, Henquin JC. The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J Biol Chem. 2002;277:32883-32891.
-
(2002)
J Biol Chem
, vol.277
, pp. 32883-32891
-
-
Bertrand, G.1
Ishiyama, N.2
Nenquin, M.3
Ravier, M.A.4
Henquin, J.C.5
-
49
-
-
0034602141
-
Glutamate is not a messenger in insulin secretion
-
MacDonald MJ, Fahien LA. Glutamate is not a messenger in insulin secretion. J Biol Chem. 2000;275:34025-34027.
-
(2000)
J Biol Chem
, vol.275
, pp. 34025-34027
-
-
MacDonald, M.J.1
Fahien, L.A.2
-
50
-
-
84926685729
-
Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment
-
Marquard J, Otter S, Welters A, et al. Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med. 2015;21:363-372.
-
(2015)
Nat Med
, vol.21
, pp. 363-372
-
-
Marquard, J.1
Otter, S.2
Welters, A.3
-
51
-
-
84904597331
-
Factors influencing the durability of the glucose-lowering effect of sitagliptin combined with a sulfonylurea
-
Kubota A, Yabe D, Kanamori A, et al. Factors influencing the durability of the glucose-lowering effect of sitagliptin combined with a sulfonylurea. J Diabetes Investig. 2014;5:445-448.
-
(2014)
J Diabetes Investig
, vol.5
, pp. 445-448
-
-
Kubota, A.1
Yabe, D.2
Kanamori, A.3
-
52
-
-
62449129181
-
Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU)
-
Marre M, Shaw J, Brandle M, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med. 2009;26:268-278.
-
(2009)
Diabet Med
, vol.26
, pp. 268-278
-
-
Marre, M.1
Shaw, J.2
Brandle, M.3
-
53
-
-
84908569527
-
Dipeptidyl peptidase-4 inhibitors and sulfonylureas for type 2 diabetes: friend or foe?
-
Yabe D, Seino Y. Dipeptidyl peptidase-4 inhibitors and sulfonylureas for type 2 diabetes: friend or foe? J Diabetes Investig. 2014;5:475-477.
-
(2014)
J Diabetes Investig
, vol.5
, pp. 475-477
-
-
Yabe, D.1
Seino, Y.2
-
54
-
-
84928907433
-
Role of Epac2A/Rap1 signaling in interplay between incretin and sulfonylurea in insulin secretion
-
Takahashi H, Shibasaki T, Park JH, et al. Role of Epac2A/Rap1 signaling in interplay between incretin and sulfonylurea in insulin secretion. Diabetes. 2015;64:1262-1272.
-
(2015)
Diabetes
, vol.64
, pp. 1262-1272
-
-
Takahashi, H.1
Shibasaki, T.2
Park, J.H.3
-
55
-
-
33847021177
-
Sulfonylurea compounds uncouple the glucose dependence of the insulinotropic effect of glucagon-like peptide 1
-
de Heer J, Holst JJ. Sulfonylurea compounds uncouple the glucose dependence of the insulinotropic effect of glucagon-like peptide 1. Diabetes. 2007;56:438-443.
-
(2007)
Diabetes
, vol.56
, pp. 438-443
-
-
de Heer, J.1
Holst, J.J.2
-
56
-
-
0014594153
-
Stimulation of insulin secretion by infusion of free fatty acids
-
Crespin SR, Greenough WB 3rd, Steinberg D. Stimulation of insulin secretion by infusion of free fatty acids. J Clin Invest. 1969;48:1934-1943.
-
(1969)
J Clin Invest
, vol.48
, pp. 1934-1943
-
-
Crespin, S.R.1
Greenough, W.B.2
Steinberg, D.3
-
57
-
-
0031683543
-
Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans
-
Dobbins RL, Chester MW, Daniels MB, McGarry JD, Stein DT. Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes. 1998;47:1613-1618.
-
(1998)
Diabetes
, vol.47
, pp. 1613-1618
-
-
Dobbins, R.L.1
Chester, M.W.2
Daniels, M.B.3
McGarry, J.D.4
Stein, D.T.5
-
58
-
-
0029888870
-
Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat
-
Stein DT, Esser V, Stevenson BE, et al. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest. 1996;97:2728-2735.
-
(1996)
J Clin Invest
, vol.97
, pp. 2728-2735
-
-
Stein, D.T.1
Esser, V.2
Stevenson, B.E.3
-
59
-
-
0037838892
-
The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids
-
Briscoe CP, Tadayyon M, Andrews JL, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003;278:11303-11311.
-
(2003)
J Biol Chem
, vol.278
, pp. 11303-11311
-
-
Briscoe, C.P.1
Tadayyon, M.2
Andrews, J.L.3
-
60
-
-
0037434991
-
Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40
-
Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003;422:173-176.
-
(2003)
Nature
, vol.422
, pp. 173-176
-
-
Itoh, Y.1
Kawamata, Y.2
Harada, M.3
-
61
-
-
34047177401
-
GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo
-
Latour MG, Alquier T, Oseid E, et al. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes. 2007;56:1087-1094.
-
(2007)
Diabetes
, vol.56
, pp. 1087-1094
-
-
Latour, M.G.1
Alquier, T.2
Oseid, E.3
-
62
-
-
33745607930
-
Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules
-
Briscoe CP, Peat AJ, McKeown SC, et al. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol. 2006;148:619-628.
-
(2006)
Br J Pharmacol
, vol.148
, pp. 619-628
-
-
Briscoe, C.P.1
Peat, A.J.2
McKeown, S.C.3
-
63
-
-
65549114432
-
Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice
-
Nagasumi K, Esaki R, Iwachidow K, et al. Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes. 2009;58:1067-1076.
-
(2009)
Diabetes
, vol.58
, pp. 1067-1076
-
-
Nagasumi, K.1
Esaki, R.2
Iwachidow, K.3
-
64
-
-
84931956985
-
GPR40 agonists for the treatment of type 2 diabetes: life after ‘TAKing’ a hit
-
Mancini AD, Poitout V. GPR40 agonists for the treatment of type 2 diabetes: life after ‘TAKing’ a hit. Diabetes Obes Metab. 2015;17:622-629.
-
(2015)
Diabetes Obes Metab
, vol.17
, pp. 622-629
-
-
Mancini, A.D.1
Poitout, V.2
-
65
-
-
84866129127
-
G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1
-
Ferdaoussi M, Bergeron V, Zarrouki B, et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia. 2012;55:2682-2692.
-
(2012)
Diabetologia
, vol.55
, pp. 2682-2692
-
-
Ferdaoussi, M.1
Bergeron, V.2
Zarrouki, B.3
-
66
-
-
84953306839
-
G protein-coupled receptors: signalling and regulation by lipid agonists for improved glucose homoeostasis
-
Moran BM, Flatt PR, McKillop AM. G protein-coupled receptors: signalling and regulation by lipid agonists for improved glucose homoeostasis. Acta Diabetol. 2016;53:177-188.
-
(2016)
Acta Diabetol
, vol.53
, pp. 177-188
-
-
Moran, B.M.1
Flatt, P.R.2
McKillop, A.M.3
-
67
-
-
84907221192
-
High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875
-
Srivastava A, Yano J, Hirozane Y, et al. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature. 2014;513:124-127.
-
(2014)
Nature
, vol.513
, pp. 124-127
-
-
Srivastava, A.1
Yano, J.2
Hirozane, Y.3
-
68
-
-
0037624071
-
Allosteric activators of glucokinase: potential role in diabetes therapy
-
Grimsby J, Sarabu R, Corbett WL, et al. Allosteric activators of glucokinase: potential role in diabetes therapy. Science. 2003;301:370-373.
-
(2003)
Science
, vol.301
, pp. 370-373
-
-
Grimsby, J.1
Sarabu, R.2
Corbett, W.L.3
-
69
-
-
23844550012
-
A novel glucokinase activator modulates pancreatic islet and hepatocyte function
-
Efanov AM, Barrett DG, Brenner MB, et al. A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology. 2005;146:3696-3701.
-
(2005)
Endocrinology
, vol.146
, pp. 3696-3701
-
-
Efanov, A.M.1
Barrett, D.G.2
Brenner, M.B.3
-
70
-
-
33845979134
-
An allosteric activator of glucokinase impairs the interaction of glucokinase and glucokinase regulatory protein and regulates glucose metabolism
-
Futamura M, Hosaka H, Kadotani A, et al. An allosteric activator of glucokinase impairs the interaction of glucokinase and glucokinase regulatory protein and regulates glucose metabolism. J Biol Chem. 2006;281:37668-37674.
-
(2006)
J Biol Chem
, vol.281
, pp. 37668-37674
-
-
Futamura, M.1
Hosaka, H.2
Kadotani, A.3
-
71
-
-
34247862169
-
Glucokinase activator PSN-GK1 displays enhanced antihyperglycaemic and insulinotropic actions
-
Fyfe MC, White JR, Taylor A, et al. Glucokinase activator PSN-GK1 displays enhanced antihyperglycaemic and insulinotropic actions. Diabetologia. 2007;50:1277-1287.
-
(2007)
Diabetologia
, vol.50
, pp. 1277-1287
-
-
Fyfe, M.C.1
White, J.R.2
Taylor, A.3
-
72
-
-
34249683855
-
Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a glucokinase activator
-
Johnson D, Shepherd RM, Gill D, Gorman T, Smith DM, Dunne MJ. Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a glucokinase activator. Diabetes. 2007;56:1694-1702.
-
(2007)
Diabetes
, vol.56
, pp. 1694-1702
-
-
Johnson, D.1
Shepherd, R.M.2
Gill, D.3
Gorman, T.4
Smith, D.M.5
Dunne, M.J.6
-
73
-
-
67649635606
-
Impact of small-molecule glucokinase activator on glucose metabolism and beta-cell mass
-
Nakamura A, Terauchi Y, Ohyama S, et al. Impact of small-molecule glucokinase activator on glucose metabolism and beta-cell mass. Endocrinology. 2009;150:1147-1154.
-
(2009)
Endocrinology
, vol.150
, pp. 1147-1154
-
-
Nakamura, A.1
Terauchi, Y.2
Ohyama, S.3
-
74
-
-
81555210580
-
Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes
-
Meininger GE, Scott R, Alba M, et al. Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes. Diabetes Care. 2011;34:2560-2566.
-
(2011)
Diabetes Care
, vol.34
, pp. 2560-2566
-
-
Meininger, G.E.1
Scott, R.2
Alba, M.3
-
75
-
-
84879796512
-
Dose-ranging study with the glucokinase activator AZD1656 in patients with type 2 diabetes mellitus on metformin
-
Wilding JP, Leonsson-Zachrisson M, Wessman C, Johnsson E. Dose-ranging study with the glucokinase activator AZD1656 in patients with type 2 diabetes mellitus on metformin. Diabetes Obes Metab. 2013;15:750-759.
-
(2013)
Diabetes Obes Metab.
, vol.15
, pp. 750-759
-
-
Wilding, J.P.1
Leonsson-Zachrisson, M.2
Wessman, C.3
Johnsson, E.4
-
76
-
-
84879242302
-
Combination of ligand- and structure-based methods in virtual screening
-
Drwal MN, Griffith R. Combination of ligand- and structure-based methods in virtual screening. Drug Discov Today Technol. 2013;10:e395-e401.
-
(2013)
Drug Discov Today Technol
, vol.10
, pp. e395-e401
-
-
Drwal, M.N.1
Griffith, R.2
-
77
-
-
84992189587
-
A novel diphenylthiosemicarbazide is a potential insulin secretagogue for anti-diabetic agent
-
Sugawara K, Honda K, Reien Y, et al. A novel diphenylthiosemicarbazide is a potential insulin secretagogue for anti-diabetic agent. PLoS One. 2016;11:e0164785.
-
(2016)
PLoS One
, vol.11
-
-
Sugawara, K.1
Honda, K.2
Reien, Y.3
|