메뉴 건너뛰기




Volumn 5, Issue , 2017, Pages 9021-9031

Remote Sensing Image Classification Based on Ensemble Extreme Learning Machine with Stacked Autoencoder

Author keywords

ensemble algorithm; extreme learning machine; feature extraction; Q statistics; Remote sensing classification

Indexed keywords

ADAPTIVE BOOSTING; DECISION TREES; FEATURE EXTRACTION; IMAGE CLASSIFICATION; IMAGE RECONSTRUCTION; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 85028747461     PISSN: None     EISSN: 21693536     Source Type: Journal    
DOI: 10.1109/ACCESS.2017.2706363     Document Type: Article
Times cited : (83)

References (30)
  • 1
    • 79957656636 scopus 로고    scopus 로고
    • Support vector selection and adaptation for remote sensing classification
    • Jun.
    • G. T. Kaya, O. K. ersoy, and M. E. Kamasak, "Support vector selection and adaptation for remote sensing classification, " IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2071-2079, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2071-2079
    • Kaya, G.T.1    Ersoy, O.K.2    Kamasak, M.E.3
  • 2
    • 84899747063 scopus 로고    scopus 로고
    • Single image super resolution based on multi-scale structural self-similarity
    • Z.-X. Panm, J. Yu, S.-X. Hu, and W.-D. Sun, "Single image super resolution based on multi-scale structural self-similarity, " Acta Autom. Sinica, vol. 40, no. 4, pp. 549-603, 2014.
    • (2014) Acta Autom. Sinica , vol.40 , Issue.4 , pp. 549-603
    • Panm, Z.-X.1    Yu, J.2    Hu, S.-X.3    Sun, W.-D.4
  • 3
    • 84963627003 scopus 로고    scopus 로고
    • Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral spatial features
    • Aug.
    • K. Tan, X. Jin, A. Plaza, X. Wang, L. Xiao, and P. Du, "Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral-spatial features, " IEEE J. Sel. Topics Appl. earth Observ. Remote Sens., vol. 9, no. 8, pp. 3439-3451, Aug. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.9 , Issue.8 , pp. 3439-3451
    • Tan, K.1    Jin, X.2    Plaza, A.3    Wang, X.4    Xiao, L.5    Du, P.6
  • 4
    • 84962484009 scopus 로고    scopus 로고
    • A deep learning approach for unsupervised domain adaptation in multitemporal remote sensing images
    • Jul.
    • E. Othman, Y. Bazi, H. AlHichri, and N. Alajlan, "A deep learning approach for unsupervised domain adaptation in multitemporal remote sensing images, " in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2015, pp. 2401-2404.
    • (2015) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 2401-2404
    • Othman, E.1    Bazi, Y.2    AlHichri, H.3    Alajlan, N.4
  • 5
    • 84907436729 scopus 로고    scopus 로고
    • Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images
    • Mar.
    • M. A. Bencherif, Y. Bazi, A. Guessoum, N. Alajlan, F. Melgani, and H. AlHichri, "Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images, " IEEE Geosci. Remote Sens. Lett., vol. 12, no. 3, pp. 527-531, Mar. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.3 , pp. 527-531
    • Bencherif, M.A.1    Bazi, Y.2    Guessoum, A.3    Alajlan, N.4    Melgani, F.5    AlHichri, H.6
  • 6
    • 84996761516 scopus 로고    scopus 로고
    • Fast and accurate spatiotemporal fusion based upon extreme learning machine
    • Dec.
    • X. Liu, C. Deng, S. Wang, G.-B. Huang, B. Zhao, and P. Lauren, "Fast and accurate spatiotemporal fusion based upon extreme learning machine, " IEEE Geosci. Remote Sens. Lett., vol. 13, no. 12, pp. 2039-2043, Dec. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.12 , pp. 2039-2043
    • Liu, X.1    Deng, C.2    Wang, S.3    Huang, G.-B.4    Zhao, B.5    Lauren, P.6
  • 7
    • 84890162039 scopus 로고    scopus 로고
    • Multiple instance ensemble learning method for high-resolution remote sensing image classification
    • P. Du and A. Samat, "Multiple instance ensemble learning method for high-resolution remote sensing image classification, " J. Remote Sens., vol. 17, no. 1, pp. 77-97, 2013.
    • (2013) J. Remote Sens. , vol.17 , Issue.1 , pp. 77-97
    • Du, P.1    Samat, A.2
  • 9
  • 10
    • 71349086364 scopus 로고    scopus 로고
    • Ensemble with neural networks for bankruptcy prediction
    • Apr.
    • M.-J. Kim and D.-K. Kang, "ensemble with neural networks for bankruptcy prediction, " expert Syst. Appl., vol. 37, no. 4, pp. 3373-3379, Apr. 2010.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.4 , pp. 3373-3379
    • Kim, M.-J.1    Kang, D.-K.2
  • 12
    • 85020202709 scopus 로고    scopus 로고
    • A remote sensing image classification method based on extreme learning machine ensemble
    • Berlin, Germany: Springer
    • M. Han and B. Liu, "A remote sensing image classification method based on extreme learning machine ensemble, " in Advances in Neural Networks. Berlin, Germany: Springer, 2013, pp. 447-454.
    • (2013) Advances in Neural Networks , pp. 447-454
    • Han, M.1    Liu, B.2
  • 13
    • 84943797969 scopus 로고    scopus 로고
    • Many hands make light work On ensemble learning techniques for data fusion in remote sensing
    • Sep.
    • A. MErentitis and C. Debes, "Many hands make light work-On ensemble learning techniques for data fusion in remote sensing, " IEEE Geosci. Remote Sens. Mag., vol. 3, no. 3, pp. 86-99, Sep. 2015.
    • (2015) IEEE Geosci. Remote Sens. Mag. , vol.3 , Issue.3 , pp. 86-99
    • Merentitis, A.1    Debes, C.2
  • 14
    • 84925296587 scopus 로고    scopus 로고
    • Local binary patterns and extreme learning machine for hyperspectral imagery classification
    • Jul.
    • W. Li, C. Chen, H. Su, and Q. Du, "Local binary patterns and extreme learning machine for hyperspectral imagery classification, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3681-3693, Jul. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.7 , pp. 3681-3693
    • Li, W.1    Chen, C.2    Su, H.3    Du, Q.4
  • 15
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Oct.
    • Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232-6251, Oct. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 16
    • 85027928171 scopus 로고    scopus 로고
    • Dynamic ensemble selection approach for hyperspectral image classification with joint spectral and spatial information
    • Jun.
    • B. B. Damodaran, R. R. Nidamanuri, and Y. Tarabalka, "Dynamic ensemble selection approach for hyperspectral image classification with joint spectral and spatial information, " IEEE J. Sel. Topics Appl. earth Observ. Remote Sens., vol. 8, no. 6, pp. 2405-2417, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2405-2417
    • Damodaran, B.B.1    Nidamanuri, R.R.2    Tarabalka, Y.3
  • 17
    • 84899896987 scopus 로고    scopus 로고
    • E2LMs: Ensemble extreme learning machines for hyperspectral image classification
    • Apr.
    • A. Samat, P. Du, S. Liu, J. Li, and L. Cheng, "e2LMs: ensemble extreme learning machines for hyperspectral image classification, " IEEE J. Sel. Topics Appl. earth Observ. Remote Sens., vol. 7, no. 4, pp. 1060-1069, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1060-1069
    • Samat, A.1    Du, P.2    Liu, S.3    Li, J.4    Cheng, L.5
  • 19
    • 84960429342 scopus 로고    scopus 로고
    • Unsupervised hierarchical convolutional sparse auto-encoder for high spatial resolution imagery scene classification
    • Aug.
    • X. Han, Y. Zhong, B. Zhao, and L. Zhang, "Unsupervised hierarchical convolutional sparse auto-encoder for high spatial resolution imagery scene classification, " in Proc. 11th Int. Conf. Natural Comput. (ICNC), Aug. 2015, pp. 42-46.
    • (2015) Proc. 11th Int. Conf. Natural Comput. (ICNC) , pp. 42-46
    • Han, X.1    Zhong, Y.2    Zhao, B.3    Zhang, L.4
  • 21
    • 67349098005 scopus 로고    scopus 로고
    • Supervised projection approach for boosting classi-fiers
    • Sep.
    • N. García-Pedrajas, "Supervised projection approach for boosting classi-fiers, " Pattern Recognit., vol. 42, no. 9, pp. 1742-1760, Sep. 2009.
    • (2009) Pattern Recognit. , vol.42 , Issue.9 , pp. 1742-1760
    • García-Pedrajas, N.1
  • 22
    • 84979071513 scopus 로고    scopus 로고
    • Dimension reduction with extreme learning machine
    • Aug.
    • L. L. C. Kasun, Y. Yang, G.-B. Huang, and Z. Zhang, "Dimension reduction with extreme learning machine, " IEEE Trans. Image Process., vol. 25, no. 8, pp. 3906-3918, Aug. 2016.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.8 , pp. 3906-3918
    • Kasun, L.L.C.1    Yang, Y.2    Huang, G.-B.3    Zhang, Z.4
  • 23
    • 84961644945 scopus 로고    scopus 로고
    • Booster in high dimensional data classification
    • Jan.
    • H. J. Kim, B. S. Choi, and M. Y. Huh, "Booster in high dimensional data classification, " IEEE Trans. Knowl. Data eng., vol. 28, no. 1, pp. 29-40, Jan. 2016.
    • (2016) IEEE Trans. Knowl. Data Eng. , vol.28 , Issue.1 , pp. 29-40
    • Kim, H.J.1    Choi, B.S.2    Huh, M.Y.3
  • 24
    • 84864119523 scopus 로고    scopus 로고
    • Relationships between diversity of classification ensembles and single-class performance measures
    • Jan.
    • S. Wang and X. Yao, "Relationships between diversity of classification ensembles and single-class performance measures, " IEEE Trans. Knowl. Data eng., vol. 25, no. 1, pp. 206-219, Jan. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.1 , pp. 206-219
    • Wang, S.1    Yao, X.2
  • 25
    • 84899736144 scopus 로고    scopus 로고
    • Classifier ensemble with diversity: Effectiveness analysis and ensemble optimization
    • C. Yang, X. Yin, and H. Hao, "Classifier ensemble with diversity: effectiveness analysis and ensemble optimization, " Acta Autom. Sinica, vol. 40, no. 4, pp. 660-674, 2014.
    • (2014) Acta Autom. Sinica , vol.40 , Issue.4 , pp. 660-674
    • Yang, C.1    Yin, X.2    Hao, H.3
  • 26
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Dec.
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "extreme learning machine: Theory and applications, " Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, Dec. 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 27
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classi fier ensembles and their relationship with the ensemble accuracy
    • L. I. Kuncheva and C. J. Whitaker, "Measures of diversity in classi fier ensembles and their relationship with the ensemble accuracy, " Mach. Learn., vol. 51, no. 2, pp. 181-207, 2003.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 28
    • 84855868516 scopus 로고    scopus 로고
    • Random forests based monitoring of human larynx using questionnaire data
    • Apr.
    • M. Bacauskiene, A. Verikas, A. Gelzinis, and A. Vegiene, "Random forests based monitoring of human larynx using questionnaire data, " expert Syst. Appl., vol. 39, no. 5, pp. 5506-5512, Apr. 2012.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.5 , pp. 5506-5512
    • Bacauskiene, M.1    Verikas, A.2    Gelzinis, A.3    Vegiene, A.4
  • 30
    • 84994787766 scopus 로고    scopus 로고
    • A novel multi-feature representation of images for heterogeneous IoTs
    • L. Yu, L. Feng, C. Chen, T. Qiu, L. Li, and J. Wu, "A novel multi-feature representation of images for heterogeneous IoTs, " IEEE Access, vol. 4, pp. 6204-6215, 2016.
    • (2016) IEEE Access , vol.4 , pp. 6204-6215
    • Yu, L.1    Feng, L.2    Chen, C.3    Qiu, T.4    Li, L.5    Wu, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.