-
1
-
-
33748611921
-
Ensemble based systems in decision making
-
R. Polikar, "Ensemble based systems in decision making, " IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21-45, 2006.
-
(2006)
IEEE Circuits Syst. Mag.
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
2
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
D. Opitz and R. Maclin, "Popular ensemble methods: An empirical study, " J. Artif. Intell. Res., vol. 11, pp. 169-198, 1999.
-
(1999)
J. Artif. Intell. Res.
, vol.11
, pp. 169-198
-
-
Opitz, D.1
Maclin, R.2
-
3
-
-
84859414659
-
Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
-
Feb.
-
A. Criminisi, J. Shotton, and E. Konukoglu, "Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning, " Found. Trends Comput. Graph. Vis., vol. 7, nos. 2-3, pp. 81-227, Feb. 2012.
-
(2012)
Found. Trends Comput. Graph. Vis.
, vol.7
, Issue.2-3
, pp. 81-227
-
-
Criminisi, A.1
Shotton, J.2
Konukoglu, E.3
-
4
-
-
77958064179
-
Mining data with random forests: A survey and results of new tests
-
A. Verikas, A. Gelzinis, and M. Bacauskiene, "Mining data with random forests: A survey and results of new tests, " Pattern Recognit., vol. 44, no. 2, pp. 330-349, 2011.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.2
, pp. 330-349
-
-
Verikas, A.1
Gelzinis, A.2
Bacauskiene, M.3
-
5
-
-
57349146373
-
Lessons from the Netflix Prize challenge
-
R. M. Bell and Y. Koren, "Lessons from the Netflix Prize challenge, " ACM SIGKDD Explor. Newsletter, vol. 9, no. 2, pp. 75-79, 2007.
-
(2007)
ACM SIGKDD Explor. Newsletter
, vol.9
, Issue.2
, pp. 75-79
-
-
Bell, R.M.1
Koren, Y.2
-
6
-
-
78751623608
-
All together now: A perspective on the Netflix Price
-
R. M. Bell, Y. Koren, and C. Volinsky, "All together now: A perspective on the Netflix Price, " Chance, vol. 23, no. 1, pp. 24-29, 2010.
-
(2010)
Chance
, vol.23
, Issue.1
, pp. 24-29
-
-
Bell, R.M.1
Koren, Y.2
Volinsky, C.3
-
7
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world classification problems?
-
Oct.
-
M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, "Do we need hundreds of classifiers to solve real world classification problems?" J. Mach. Learn. Res., vol. 15, pp. 3133-3181, Oct. 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 3133-3181
-
-
Fernández-Delgado, M.1
Cernadas, E.2
Barro, S.3
Amorim, D.4
-
8
-
-
0026692226
-
Stacked generalization
-
D. Wolpert, "Stacked generalization, " Neural Netw., vol. 5, no. 2, pp. 241-259, 1992.
-
(1992)
Neural Netw.
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.1
-
9
-
-
84911415501
-
Automatic fusion and classification of hyperspectral and LiDAR data using random forests
-
A. Merentitis, C. Debes, R. Heremans, and N. Frangiadakis, "Automatic fusion and classification of hyperspectral and LiDAR data using random forests, " in Proc. IEEE Int. Geosci. Remote Sensing Symp., 2014, pp. 1245-1248.
-
(2014)
Proc. IEEE Int. Geosci. Remote Sensing Symp.
, pp. 1245-1248
-
-
Merentitis, A.1
Debes, C.2
Heremans, R.3
Frangiadakis, N.4
-
10
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests, " Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
11
-
-
84905924444
-
Hyperspectral and Li-DAR data fusion: Outcome of the 2013 GRSS Data Fusion Contest
-
June
-
C. Debes, A. Merentitis, R. Heremans, J. Hahn, N. Frangiadakis, T. van Kasteren, W. Liao, R. Bellens, A. Pizurica, S. Gautama, W. Philips, S. Prasad, Q. Du, and F. Pacifici, "Hyperspectral and Li-DAR data fusion: Outcome of the 2013 GRSS Data Fusion Contest, " IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, vol. 7, pp. 2405-2418, June 2014.
-
(2014)
IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing
, vol.7
, pp. 2405-2418
-
-
Debes, C.1
Merentitis, A.2
Heremans, R.3
Hahn, J.4
Frangiadakis, N.5
Van Kasteren, T.6
Liao, W.7
Bellens, R.8
Pizurica, A.9
Gautama, S.10
Philips, W.11
Prasad, S.12
Du, Q.13
Pacifici, F.14
-
12
-
-
84875922650
-
An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping
-
T. Kavzoglu and I. Colkesen, "An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping, " Int. J. Remote Sens., vol. 34, no. 12, pp. 4224-4241, 2013.
-
(2013)
Int. J. Remote Sens.
, vol.34
, Issue.12
, pp. 4224-4241
-
-
Kavzoglu, T.1
Colkesen, I.2
-
13
-
-
84888299612
-
Hyperspectral remote sensing image classification based on rotation forest
-
Jan.
-
J. Xia, P. Du, X. He, and J. Chanussot, "Hyperspectral remote sensing image classification based on rotation forest, " IEEE Geosci. Remote Sensing Lett., vol. 11, no. 1, pp. 239-243, Jan. 2014.
-
(2014)
IEEE Geosci. Remote Sensing Lett.
, vol.11
, Issue.1
, pp. 239-243
-
-
Xia, J.1
Du, P.2
He, X.3
Chanussot, J.4
-
14
-
-
84898442749
-
Ensemble learning with multiple classifiers and polarimetric features for polarized SAR image classification
-
A. Samat, P. Du, M. H. A. Baig, S. Chakravarty, and L. Cheng, "Ensemble learning with multiple classifiers and polarimetric features for polarized SAR image classification, " Photogramm. Eng. Remote Sens., vol. 80, no. 3, pp. 239-251, 2014.
-
(2014)
Photogramm. Eng. Remote Sens.
, vol.80
, Issue.3
, pp. 239-251
-
-
Samat, A.1
Du, P.2
Baig, M.H.A.3
Chakravarty, S.4
Cheng, L.5
-
15
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. H. Friedman, "Greedy function approximation: A gradient boosting machine, " Ann. Stat., vol. 29, no. 5, pp. 1189-1232, 2000.
-
(2000)
Ann. Stat.
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
16
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors, " Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
17
-
-
45249128876
-
Combining forecasts: A review and annotated bibliography
-
R. T. Clemen, "Combining forecasts: A review and annotated bibliography, " Int. J. Forecasting, vol. 5, no. 4, pp. 559-583, 1989.
-
(1989)
Int. J. Forecasting
, vol.5
, Issue.4
, pp. 559-583
-
-
Clemen, R.T.1
-
18
-
-
0025507176
-
Neural network ensembles
-
L. K. Hansen and P. Salamon, "Neural network ensembles, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 10, pp. 993-1001, 1990.
-
(1990)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.12
, Issue.10
, pp. 993-1001
-
-
Hansen, L.K.1
Salamon, P.2
-
19
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire, "The strength of weak learnability, " Mach. Learn., vol. 5, no. 2, pp. 197-227, 1990.
-
(1990)
Mach. Learn.
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
20
-
-
0003421415
-
-
Philadelphia, PA: SIAM
-
B. Efron and B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, vol. 38. Philadelphia, PA: SIAM, 1982.
-
(1982)
The Jackknife, the Bootstrap and Other Resampling Plans
, vol.38
-
-
Efron, B.1
Efron, B.2
-
22
-
-
84983110889
-
A desicion-theoretic generalization of on-line learning and an application to boosting
-
Berlin, Germany: Springer
-
Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of on-line learning and an application to boosting, " in Computational Learning Theory. Berlin, Germany: Springer, 1995, pp. 23-37.
-
(1995)
Computational Learning Theory
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.E.2
-
23
-
-
38149107937
-
Estimating neuronal variable importance with random forest
-
Mar.
-
J. Oh, M. Laubach, and A. Luczak, "Estimating neuronal variable importance with random forest, " in Proc. IEEE 29th Annu. Bioengineering Conf., Mar. 2003, pp. 33-34.
-
(2003)
Proc. IEEE 29th Annu. Bioengineering Conf.
, pp. 33-34
-
-
Oh, J.1
Laubach, M.2
Luczak, A.3
-
24
-
-
33751197017
-
Diagnostic rules induced by an ensemble method for childhood leukemia
-
Oct.
-
J. Li, H. Liu, and L. Li, "Diagnostic rules induced by an ensemble method for childhood leukemia, " in Proc. 5th IEEE Symp. Bioinformatics Bioengineering, Oct. 2005, pp. 246-249.
-
(2005)
Proc. 5th IEEE Symp. Bioinformatics Bioengineering
, pp. 246-249
-
-
Li, J.1
Liu, H.2
Li, L.3
-
25
-
-
47749083529
-
Statistical classification of mammograms using random forest classifier
-
Oct.
-
L. Vibha, G. M. Harshavardhan, K. Pranaw, P. D. Shenoy, K. R. Venugopal, and L. M. Patnaik, "Statistical classification of mammograms using random forest classifier, " in Proc. 4th Int. Conf. Intelligent Sensing Information Processing, Oct. 2006, pp. 178-183.
-
(2006)
Proc. 4th Int. Conf. Intelligent Sensing Information Processing
, pp. 178-183
-
-
Vibha, L.1
Harshavardhan, G.M.2
Pranaw, K.3
Shenoy, P.D.4
Venugopal, K.R.5
Patnaik, L.M.6
-
26
-
-
0345548657
-
Random forest: A classification and regression tool for compound classification and QSAR modeling
-
V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan, and B. Feuston, "Random forest: A classification and regression tool for compound classification and QSAR modeling, " J. Chem. Inform. Comput. Sci., vol. 43, no. 6, pp. 1947-1958, 2003.
-
(2003)
J. Chem. Inform. Comput. Sci.
, vol.43
, Issue.6
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.4
Sheridan, R.5
Feuston, B.6
-
27
-
-
50649101132
-
Image classification using random forests and ferns
-
Oct.
-
A. Bosch, A. Zisserman, and X. Muoz, "Image classification using random forests and ferns, " in Proc. IEEE 11th Int. Conf. Computer Vision, Oct. 2007, pp. 1-8.
-
(2007)
Proc. IEEE 11th Int. Conf. Computer Vision
, pp. 1-8
-
-
Bosch, A.1
Zisserman, A.2
Muoz, X.3
-
28
-
-
48649109800
-
Face classification by a random forest
-
Oct.
-
A. Z. Kouzani, S. Nahavandi, and K. Khoshmanesh, "Face classification by a random forest, " in Proc. TENCON IEEE Region 10 Conf., Oct. 2007, pp. 1-4.
-
(2007)
Proc. TENCON IEEE Region 10 Conf.
, pp. 1-4
-
-
Kouzani, A.Z.1
Nahavandi, S.2
Khoshmanesh, K.3
-
29
-
-
51149110955
-
Using random forests for handwritten digit recognition
-
Sept.
-
S. Bernard, S. Adam, and L. Heutte, "Using random forests for handwritten digit recognition, " in Proc. 9th Int. Conf. Document Analysis Recognition, Sept. 2007, vol. 2, pp. 1043-1047.
-
(2007)
Proc. 9th Int. Conf. Document Analysis Recognition
, vol.2
, pp. 1043-1047
-
-
Bernard, S.1
Adam, S.2
Heutte, L.3
-
31
-
-
84897807587
-
Classification of remote sensing data using margin-based ensemble methods
-
Sept.
-
S. Boukir, L. Guo, and N. Chehata, "Classification of remote sensing data using margin-based ensemble methods, " in Proc. 20th IEEE Int. Conf. Image Processing, Sept. 2013, pp. 2602-2606.
-
(2013)
Proc. 20th IEEE Int. Conf. Image Processing
, pp. 2602-2606
-
-
Boukir, S.1
Guo, L.2
Chehata, N.3
-
32
-
-
36348971282
-
A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images
-
Dec.
-
P. Zhongm and R. Wang, "A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images, " IEEE Trans. Geosci. Remote Sensing, vol. 45, no. 12, pp. 3978-3988, Dec. 2007.
-
(2007)
IEEE Trans. Geosci. Remote Sensing
, vol.45
, Issue.12
, pp. 3978-3988
-
-
Zhongm, P.1
Wang, R.2
-
33
-
-
37249003229
-
Multiple classifier systems in remote sensing: From basics to recent developments
-
M. Haindl, J. Kittler, and F. Roli, Eds. Berlin, Germany: Springer-Verlag
-
J. A. Benediktsson, J. Chanussot, and M. Fauvel, "Multiple classifier systems in remote sensing: From basics to recent developments, " in Multiple Classifier Systems (Lecture Notes in Computer Science, vol. 4472), M. Haindl, J. Kittler, and F. Roli, Eds. Berlin, Germany: Springer-Verlag, 2007, pp. 501-512.
-
(2007)
Multiple Classifier Systems Lecture Notes in Computer Science
, vol.4472
, pp. 501-512
-
-
Benediktsson, J.A.1
Chanussot, J.2
Fauvel, M.3
-
34
-
-
0242709836
-
Random forests for land cover classification
-
July
-
M. Pal, "Random forests for land cover classification, " in Proc. IEEE Int. Geoscience Remote Sensing Symp., July 2003, vol. 6, pp. 3510-3512.
-
(2003)
Proc. IEEE Int. Geoscience Remote Sensing Symp.
, vol.6
, pp. 3510-3512
-
-
Pal, M.1
-
35
-
-
33745699905
-
Random forest classifiers for hyperspectral data
-
July
-
S. R. Joelsson, J. A. Benediktsson, and J. R. Sveinsson, "Random forest classifiers for hyperspectral data, " in Proc. IEEE Int. Geoscience Remote Sensing Symp., July 2005, vol. 1, p. 4.
-
(2005)
Proc. IEEE Int. Geoscience Remote Sensing Symp.
, vol.1
, pp. 4
-
-
Joelsson, S.R.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
36
-
-
14644421528
-
Investigation of the random forest framework for classification of hyperspectral data
-
J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data, " IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 3, pp. 492-501, 2005.
-
(2005)
IEEE Trans. Geosci. Remote Sensing
, vol.43
, Issue.3
, pp. 492-501
-
-
Ham, J.1
Chen, Y.2
Crawford, M.M.3
Ghosh, J.4
-
37
-
-
15944365217
-
Random forest classification of multisource remote sensing and geographic data
-
Sept.
-
P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, "Random forest classification of multisource remote sensing and geographic data, " in Proc. IEEE Int. Geoscience Remote Sensing Symp., Sept. 2004, vol. 2, pp. 1049-1052.
-
(2004)
Proc. IEEE Int. Geoscience Remote Sensing Symp.
, vol.2
, pp. 1049-1052
-
-
Gislason, P.O.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
38
-
-
84899943917
-
Application of ensemble learning in hyperspectral image classification: Towards selecting favorable spots in the bias-variance plane
-
Apr.
-
A. Merentitis, C. Debes, and R. Heremans, "Application of ensemble learning in hyperspectral image classification: Towards selecting favorable spots in the bias-variance plane, " IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Apr. 2014, vol. 7, pp. 1089-1102.
-
(2014)
IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing
, vol.7
, pp. 1089-1102
-
-
Merentitis, A.1
Debes, C.2
Heremans, R.3
-
39
-
-
43949125818
-
Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
-
J. Chan and D. Paelinckx, "Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery, " Remote Sens. Environ., vol. 112, no. 6, pp. 2999-3011, 2008.
-
(2008)
Remote Sens. Environ.
, vol.112
, Issue.6
, pp. 2999-3011
-
-
Chan, J.1
Paelinckx, D.2
-
40
-
-
21744462998
-
On bias, variance, 0/1-loss, and the curse-of-dimensionality
-
J. Friedman, "On bias, variance, 0/1-loss, and the curse-of-dimensionality, " Data Mining Knowl. Discovery, vol. 1, no. 1, pp. 55-77, 1997.
-
(1997)
Data Mining Knowl. Discovery
, vol.1
, Issue.1
, pp. 55-77
-
-
Friedman, J.1
-
42
-
-
0003619255
-
-
Stat. Dept., Univ. California, Oakland, CA, Tech. Rep. 460
-
L. Breiman, "Bias, variance, and arcing classifiers, " Stat. Dept., Univ. California, Oakland, CA, Tech. Rep. 460, 1996.
-
(1996)
Bias, Variance, and Arcing Classifiers
-
-
Breiman, L.1
-
43
-
-
0012937288
-
A unified bias-variance decomposition and its applications
-
P. Domingos, "A unified bias-variance decomposition and its applications, " in Proc. 17th Int. Conf. Machine Learning, 2000, pp. 231-238.
-
(2000)
Proc. 17th Int. Conf. Machine Learning
, pp. 231-238
-
-
Domingos, P.1
-
44
-
-
0037403462
-
Variance and bias for general loss functions
-
G. M. James, "Variance and bias for general loss functions, " Mach. Learn., vol. 51, no. 2, pp. 115-135, 2003.
-
(2003)
Mach. Learn.
, vol.51
, Issue.2
, pp. 115-135
-
-
James, G.M.1
-
46
-
-
84899983754
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
San Francisco, CA
-
P. Bartlett, R. E. Schapire, Y. Freund, and W. S. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods, " in Proc. 14th Int. Conf. Machine Learning, San Francisco, CA, 1997.
-
(1997)
Proc. 14th Int. Conf. Machine Learning
-
-
Bartlett, P.1
Schapire, R.E.2
Freund, Y.3
Lee, W.S.4
-
47
-
-
70350623143
-
-
arXiv:0811. 3619, SSN 0249-6399
-
J.-M. Poggi, R. Genuer, and C. Tuleau, "Random forests: Some methodological insights, " arXiv:0811. 3619, SSN 0249-6399, 2008.
-
(2008)
Random Forests: Some Methodological Insights
-
-
Poggi, J.-M.1
Genuer, R.2
Tuleau, C.3
-
48
-
-
0002978642
-
Experiments with a new boosting algorithm
-
L. Saitta, Ed., San Francisco, CA
-
Y. Freund, and R. Shapire, "Experiments with a new boosting algorithm, " in Proc. 13th Int. Conf. Machine Learning, L. Saitta, Ed., San Francisco, CA, 1996, pp. 148-156.
-
(1996)
Proc. 13th Int. Conf. Machine Learning
, pp. 148-156
-
-
Freund, Y.1
Shapire, R.2
-
50
-
-
33646430006
-
Extremely randomized trees
-
P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees, " Machine Learning, vol. 63, no. 1, pp. 3-42, 2006.
-
(2006)
Machine Learning
, vol.63
, Issue.1
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
51
-
-
53349084895
-
Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas
-
M. Dalponte, L. Bruzzone, and D. Gianelle, "Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas, " IEEE Trans. Geosci. Remote Sensing, vol. 46, no. 5, pp. 1416-1427, 2008.
-
(2008)
IEEE Trans. Geosci. Remote Sensing
, vol.46
, Issue.5
, pp. 1416-1427
-
-
Dalponte, M.1
Bruzzone, L.2
Gianelle, D.3
-
52
-
-
43049154818
-
Fusion of hyperspectral images and lidar-based dems for coastal mapping
-
A. F. Elakshe, "Fusion of hyperspectral images and lidar-based dems for coastal mapping, " Opt. Lasers Eng., vol. 46, no. 7, pp. 493-498, 2008.
-
(2008)
Opt. Lasers Eng.
, vol.46
, Issue.7
, pp. 493-498
-
-
Elakshe, A.F.1
-
53
-
-
80052631826
-
Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion
-
A. Swatantrana, R. Dubayaha, D. Robertsb, M. Hoftona, and J. B. Blairc, "Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion, " Remote Sens. Environ., vol. 115, no. 11, pp. 2917-2930, 2011.
-
(2011)
Remote Sens. Environ.
, vol.115
, Issue.11
, pp. 2917-2930
-
-
Swatantrana, A.1
Dubayaha, R.2
Robertsb, D.3
Hoftona, M.4
Blairc, J.B.5
-
54
-
-
0036080105
-
Hierarchical fusion of multiple classifiers for hyperspectral data analysis
-
S. Kumar, J. Ghosh, and M. M. Crawford, "Hierarchical fusion of multiple classifiers for hyperspectral data analysis, " Pattern Anal. Applicat., vol. 5, no. 2, pp. 210-220, 2002.
-
(2002)
Pattern Anal. Applicat.
, vol.5
, Issue.2
, pp. 210-220
-
-
Kumar, S.1
Ghosh, J.2
Crawford, M.M.3
-
55
-
-
84866235367
-
Binary and multi-class classification of fused lidar-imagery data using an ensemble method
-
S. Nourzad and A. Pradhan, "Binary and multi-class classification of fused lidar-imagery data using an ensemble method, " in Proc. Construction Research Congr., 2012, pp. 909-918.
-
(2012)
Proc. Construction Research Congr.
, pp. 909-918
-
-
Nourzad, S.1
Pradhan, A.2
-
56
-
-
84885019653
-
Combining support vector machines and Markov random fields in an integrated framework for contextual image classification
-
G. Moser and S. B. Serpico, "Combining support vector machines and Markov random fields in an integrated framework for contextual image classification, " IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 5, pp. 2734-2752, 2013.
-
(2013)
IEEE Trans. Geosci. Remote Sensing
, vol.51
, Issue.5
, pp. 2734-2752
-
-
Moser, G.1
Serpico, S.B.2
-
57
-
-
80955159602
-
Explicit signal to noise ratio in reproducing kernel Hilbert spaces
-
A. A. Nielsen, L. Gomez-Chova, and G. Camps-Valls, "Explicit signal to noise ratio in reproducing kernel Hilbert spaces, " in Proc. IEEE Int. Geoscience Remote Sensing Symp., 2011, pp. 3570-3573.
-
(2011)
Proc. IEEE Int. Geoscience Remote Sensing Symp.
, pp. 3570-3573
-
-
Nielsen, A.A.1
Gomez-Chova, L.2
Camps-Valls, G.3
-
58
-
-
79951820684
-
Kernel maximum autocorrelation factor and minimum noise fraction transformations
-
A. A. Nielsen, "Kernel maximum autocorrelation factor and minimum noise fraction transformations, " IEEE Trans. Image Processing, vol. 20, no. 3, pp. 612-624, 2011.
-
(2011)
IEEE Trans. Image Processing
, vol.20
, Issue.3
, pp. 612-624
-
-
Nielsen, A.A.1
-
59
-
-
0000013152
-
On the statistical analysis of dirty pictures
-
J. Besag, "On the statistical analysis of dirty pictures, " J. Roy. Stat. Soc., vol. 48, no. 3, pp. 259-302, 1986.
-
(1986)
J. Roy. Stat. Soc.
, vol.48
, Issue.3
, pp. 259-302
-
-
Besag, J.1
-
60
-
-
84873178848
-
Sparsity-based restoration of SMOS images in the presence of outliers
-
July
-
J. Preciozzi, P. Muse, A. Almansa, S. Durand, F. Cabot, Y. Kerr, A. Khazaal, and B. Rouge, "Sparsity-based restoration of SMOS images in the presence of outliers, " in Proc. IEEE Int. Geoscience Remote Sensing Symp., July 2012, pp. 3501-3504.
-
(2012)
Proc. IEEE Int. Geoscience Remote Sensing Symp.
, pp. 3501-3504
-
-
Preciozzi, J.1
Muse, P.2
Almansa, A.3
Durand, S.4
Cabot, F.5
Kerr, Y.6
Khazaal, A.7
Rouge, B.8
-
62
-
-
14644421528
-
Investigation of the random forest framework for classification of hyperspectral data
-
J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data, " IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 3, pp. 492-501, 2005.
-
(2005)
IEEE Trans. Geosci. Remote Sensing
, vol.43
, Issue.3
, pp. 492-501
-
-
Ham, J.1
Chen, Y.2
Crawford, M.M.3
Ghosh, J.4
|