메뉴 건너뛰기




Volumn 3, Issue 3, 2015, Pages 86-99

Many Hands Make Light Work - On Ensemble Learning Techniques for Data Fusion in Remote Sensing

Author keywords

[No Author keywords available]

Indexed keywords

DATA FUSION; DECISION TREES; FORESTRY; REMOTE SENSING;

EID: 84943797969     PISSN: 24732397     EISSN: 21686831     Source Type: Journal    
DOI: 10.1109/MGRS.2015.2432092     Document Type: Article
Times cited : (21)

References (62)
  • 1
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar, "Ensemble based systems in decision making, " IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21-45, 2006.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 2
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • D. Opitz and R. Maclin, "Popular ensemble methods: An empirical study, " J. Artif. Intell. Res., vol. 11, pp. 169-198, 1999.
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 3
    • 84859414659 scopus 로고    scopus 로고
    • Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
    • Feb.
    • A. Criminisi, J. Shotton, and E. Konukoglu, "Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning, " Found. Trends Comput. Graph. Vis., vol. 7, nos. 2-3, pp. 81-227, Feb. 2012.
    • (2012) Found. Trends Comput. Graph. Vis. , vol.7 , Issue.2-3 , pp. 81-227
    • Criminisi, A.1    Shotton, J.2    Konukoglu, E.3
  • 4
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: A survey and results of new tests
    • A. Verikas, A. Gelzinis, and M. Bacauskiene, "Mining data with random forests: A survey and results of new tests, " Pattern Recognit., vol. 44, no. 2, pp. 330-349, 2011.
    • (2011) Pattern Recognit. , vol.44 , Issue.2 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 5
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the Netflix Prize challenge
    • R. M. Bell and Y. Koren, "Lessons from the Netflix Prize challenge, " ACM SIGKDD Explor. Newsletter, vol. 9, no. 2, pp. 75-79, 2007.
    • (2007) ACM SIGKDD Explor. Newsletter , vol.9 , Issue.2 , pp. 75-79
    • Bell, R.M.1    Koren, Y.2
  • 6
    • 78751623608 scopus 로고    scopus 로고
    • All together now: A perspective on the Netflix Price
    • R. M. Bell, Y. Koren, and C. Volinsky, "All together now: A perspective on the Netflix Price, " Chance, vol. 23, no. 1, pp. 24-29, 2010.
    • (2010) Chance , vol.23 , Issue.1 , pp. 24-29
    • Bell, R.M.1    Koren, Y.2    Volinsky, C.3
  • 7
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Oct.
    • M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, "Do we need hundreds of classifiers to solve real world classification problems?" J. Mach. Learn. Res., vol. 15, pp. 3133-3181, Oct. 2014.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 8
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. Wolpert, "Stacked generalization, " Neural Netw., vol. 5, no. 2, pp. 241-259, 1992.
    • (1992) Neural Netw. , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests, " Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 84875922650 scopus 로고    scopus 로고
    • An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping
    • T. Kavzoglu and I. Colkesen, "An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping, " Int. J. Remote Sens., vol. 34, no. 12, pp. 4224-4241, 2013.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.12 , pp. 4224-4241
    • Kavzoglu, T.1    Colkesen, I.2
  • 13
    • 84888299612 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classification based on rotation forest
    • Jan.
    • J. Xia, P. Du, X. He, and J. Chanussot, "Hyperspectral remote sensing image classification based on rotation forest, " IEEE Geosci. Remote Sensing Lett., vol. 11, no. 1, pp. 239-243, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sensing Lett. , vol.11 , Issue.1 , pp. 239-243
    • Xia, J.1    Du, P.2    He, X.3    Chanussot, J.4
  • 14
    • 84898442749 scopus 로고    scopus 로고
    • Ensemble learning with multiple classifiers and polarimetric features for polarized SAR image classification
    • A. Samat, P. Du, M. H. A. Baig, S. Chakravarty, and L. Cheng, "Ensemble learning with multiple classifiers and polarimetric features for polarized SAR image classification, " Photogramm. Eng. Remote Sens., vol. 80, no. 3, pp. 239-251, 2014.
    • (2014) Photogramm. Eng. Remote Sens. , vol.80 , Issue.3 , pp. 239-251
    • Samat, A.1    Du, P.2    Baig, M.H.A.3    Chakravarty, S.4    Cheng, L.5
  • 15
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. H. Friedman, "Greedy function approximation: A gradient boosting machine, " Ann. Stat., vol. 29, no. 5, pp. 1189-1232, 2000.
    • (2000) Ann. Stat. , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 16
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors, " Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 17
    • 45249128876 scopus 로고
    • Combining forecasts: A review and annotated bibliography
    • R. T. Clemen, "Combining forecasts: A review and annotated bibliography, " Int. J. Forecasting, vol. 5, no. 4, pp. 559-583, 1989.
    • (1989) Int. J. Forecasting , vol.5 , Issue.4 , pp. 559-583
    • Clemen, R.T.1
  • 19
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire, "The strength of weak learnability, " Mach. Learn., vol. 5, no. 2, pp. 197-227, 1990.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 22
    • 84983110889 scopus 로고
    • A desicion-theoretic generalization of on-line learning and an application to boosting
    • Berlin, Germany: Springer
    • Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of on-line learning and an application to boosting, " in Computational Learning Theory. Berlin, Germany: Springer, 1995, pp. 23-37.
    • (1995) Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 24
    • 33751197017 scopus 로고    scopus 로고
    • Diagnostic rules induced by an ensemble method for childhood leukemia
    • Oct.
    • J. Li, H. Liu, and L. Li, "Diagnostic rules induced by an ensemble method for childhood leukemia, " in Proc. 5th IEEE Symp. Bioinformatics Bioengineering, Oct. 2005, pp. 246-249.
    • (2005) Proc. 5th IEEE Symp. Bioinformatics Bioengineering , pp. 246-249
    • Li, J.1    Liu, H.2    Li, L.3
  • 26
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and QSAR modeling
    • V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan, and B. Feuston, "Random forest: A classification and regression tool for compound classification and QSAR modeling, " J. Chem. Inform. Comput. Sci., vol. 43, no. 6, pp. 1947-1958, 2003.
    • (2003) J. Chem. Inform. Comput. Sci. , vol.43 , Issue.6 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.4    Sheridan, R.5    Feuston, B.6
  • 31
    • 84897807587 scopus 로고    scopus 로고
    • Classification of remote sensing data using margin-based ensemble methods
    • Sept.
    • S. Boukir, L. Guo, and N. Chehata, "Classification of remote sensing data using margin-based ensemble methods, " in Proc. 20th IEEE Int. Conf. Image Processing, Sept. 2013, pp. 2602-2606.
    • (2013) Proc. 20th IEEE Int. Conf. Image Processing , pp. 2602-2606
    • Boukir, S.1    Guo, L.2    Chehata, N.3
  • 32
    • 36348971282 scopus 로고    scopus 로고
    • A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images
    • Dec.
    • P. Zhongm and R. Wang, "A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images, " IEEE Trans. Geosci. Remote Sensing, vol. 45, no. 12, pp. 3978-3988, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , Issue.12 , pp. 3978-3988
    • Zhongm, P.1    Wang, R.2
  • 33
    • 37249003229 scopus 로고    scopus 로고
    • Multiple classifier systems in remote sensing: From basics to recent developments
    • M. Haindl, J. Kittler, and F. Roli, Eds. Berlin, Germany: Springer-Verlag
    • J. A. Benediktsson, J. Chanussot, and M. Fauvel, "Multiple classifier systems in remote sensing: From basics to recent developments, " in Multiple Classifier Systems (Lecture Notes in Computer Science, vol. 4472), M. Haindl, J. Kittler, and F. Roli, Eds. Berlin, Germany: Springer-Verlag, 2007, pp. 501-512.
    • (2007) Multiple Classifier Systems Lecture Notes in Computer Science , vol.4472 , pp. 501-512
    • Benediktsson, J.A.1    Chanussot, J.2    Fauvel, M.3
  • 34
    • 0242709836 scopus 로고    scopus 로고
    • Random forests for land cover classification
    • July
    • M. Pal, "Random forests for land cover classification, " in Proc. IEEE Int. Geoscience Remote Sensing Symp., July 2003, vol. 6, pp. 3510-3512.
    • (2003) Proc. IEEE Int. Geoscience Remote Sensing Symp. , vol.6 , pp. 3510-3512
    • Pal, M.1
  • 36
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data, " IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 3, pp. 492-501, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 38
    • 84899943917 scopus 로고    scopus 로고
    • Application of ensemble learning in hyperspectral image classification: Towards selecting favorable spots in the bias-variance plane
    • Apr.
    • A. Merentitis, C. Debes, and R. Heremans, "Application of ensemble learning in hyperspectral image classification: Towards selecting favorable spots in the bias-variance plane, " IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Apr. 2014, vol. 7, pp. 1089-1102.
    • (2014) IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing , vol.7 , pp. 1089-1102
    • Merentitis, A.1    Debes, C.2    Heremans, R.3
  • 39
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • J. Chan and D. Paelinckx, "Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery, " Remote Sens. Environ., vol. 112, no. 6, pp. 2999-3011, 2008.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.1    Paelinckx, D.2
  • 40
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • J. Friedman, "On bias, variance, 0/1-loss, and the curse-of-dimensionality, " Data Mining Knowl. Discovery, vol. 1, no. 1, pp. 55-77, 1997.
    • (1997) Data Mining Knowl. Discovery , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.1
  • 41
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • R. Kohavi and D. H. Wolpert, "Bias plus variance decomposition for zero-one loss functions, " in Proc. 13th Int. Conf. Machine Learning, 1996, pp. 275-283.
    • (1996) Proc. 13th Int. Conf. Machine Learning , pp. 275-283
    • Kohavi, R.1    Wolpert, D.H.2
  • 42
  • 43
    • 0012937288 scopus 로고    scopus 로고
    • A unified bias-variance decomposition and its applications
    • P. Domingos, "A unified bias-variance decomposition and its applications, " in Proc. 17th Int. Conf. Machine Learning, 2000, pp. 231-238.
    • (2000) Proc. 17th Int. Conf. Machine Learning , pp. 231-238
    • Domingos, P.1
  • 44
    • 0037403462 scopus 로고    scopus 로고
    • Variance and bias for general loss functions
    • G. M. James, "Variance and bias for general loss functions, " Mach. Learn., vol. 51, no. 2, pp. 115-135, 2003.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 115-135
    • James, G.M.1
  • 48
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • L. Saitta, Ed., San Francisco, CA
    • Y. Freund, and R. Shapire, "Experiments with a new boosting algorithm, " in Proc. 13th Int. Conf. Machine Learning, L. Saitta, Ed., San Francisco, CA, 1996, pp. 148-156.
    • (1996) Proc. 13th Int. Conf. Machine Learning , pp. 148-156
    • Freund, Y.1    Shapire, R.2
  • 50
    • 33646430006 scopus 로고    scopus 로고
    • Extremely randomized trees
    • P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees, " Machine Learning, vol. 63, no. 1, pp. 3-42, 2006.
    • (2006) Machine Learning , vol.63 , Issue.1 , pp. 3-42
    • Geurts, P.1    Ernst, D.2    Wehenkel, L.3
  • 51
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas
    • M. Dalponte, L. Bruzzone, and D. Gianelle, "Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas, " IEEE Trans. Geosci. Remote Sensing, vol. 46, no. 5, pp. 1416-1427, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sensing , vol.46 , Issue.5 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 52
    • 43049154818 scopus 로고    scopus 로고
    • Fusion of hyperspectral images and lidar-based dems for coastal mapping
    • A. F. Elakshe, "Fusion of hyperspectral images and lidar-based dems for coastal mapping, " Opt. Lasers Eng., vol. 46, no. 7, pp. 493-498, 2008.
    • (2008) Opt. Lasers Eng. , vol.46 , Issue.7 , pp. 493-498
    • Elakshe, A.F.1
  • 53
    • 80052631826 scopus 로고    scopus 로고
    • Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion
    • A. Swatantrana, R. Dubayaha, D. Robertsb, M. Hoftona, and J. B. Blairc, "Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion, " Remote Sens. Environ., vol. 115, no. 11, pp. 2917-2930, 2011.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.11 , pp. 2917-2930
    • Swatantrana, A.1    Dubayaha, R.2    Robertsb, D.3    Hoftona, M.4    Blairc, J.B.5
  • 54
    • 0036080105 scopus 로고    scopus 로고
    • Hierarchical fusion of multiple classifiers for hyperspectral data analysis
    • S. Kumar, J. Ghosh, and M. M. Crawford, "Hierarchical fusion of multiple classifiers for hyperspectral data analysis, " Pattern Anal. Applicat., vol. 5, no. 2, pp. 210-220, 2002.
    • (2002) Pattern Anal. Applicat. , vol.5 , Issue.2 , pp. 210-220
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 55
    • 84866235367 scopus 로고    scopus 로고
    • Binary and multi-class classification of fused lidar-imagery data using an ensemble method
    • S. Nourzad and A. Pradhan, "Binary and multi-class classification of fused lidar-imagery data using an ensemble method, " in Proc. Construction Research Congr., 2012, pp. 909-918.
    • (2012) Proc. Construction Research Congr. , pp. 909-918
    • Nourzad, S.1    Pradhan, A.2
  • 56
    • 84885019653 scopus 로고    scopus 로고
    • Combining support vector machines and Markov random fields in an integrated framework for contextual image classification
    • G. Moser and S. B. Serpico, "Combining support vector machines and Markov random fields in an integrated framework for contextual image classification, " IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 5, pp. 2734-2752, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sensing , vol.51 , Issue.5 , pp. 2734-2752
    • Moser, G.1    Serpico, S.B.2
  • 58
    • 79951820684 scopus 로고    scopus 로고
    • Kernel maximum autocorrelation factor and minimum noise fraction transformations
    • A. A. Nielsen, "Kernel maximum autocorrelation factor and minimum noise fraction transformations, " IEEE Trans. Image Processing, vol. 20, no. 3, pp. 612-624, 2011.
    • (2011) IEEE Trans. Image Processing , vol.20 , Issue.3 , pp. 612-624
    • Nielsen, A.A.1
  • 59
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag, "On the statistical analysis of dirty pictures, " J. Roy. Stat. Soc., vol. 48, no. 3, pp. 259-302, 1986.
    • (1986) J. Roy. Stat. Soc. , vol.48 , Issue.3 , pp. 259-302
    • Besag, J.1
  • 62
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data, " IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 3, pp. 492-501, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.