메뉴 건너뛰기




Volumn 49, Issue 6 PART 1, 2011, Pages 2071-2079

Support vector selection and adaptation for remote sensing classification

Author keywords

Classification of multisource; hyperspectral and multispectral images; support vector machines (SVMs); support vector selection and adaptation (SVSA)

Indexed keywords

1-NEAREST NEIGHBOR; CLASSIFICATION METHODS; CLASSIFICATION PERFORMANCE; HYPERSPECTRAL; HYPERSPECTRAL DATA; LINEAR SVM; MULTISOURCES; NEAREST NEIGHBOR METHOD; NON-LINEARLY SEPARABLE DATA; NONLINEAR SUPPORT VECTOR MACHINES; REFERENCE VECTORS; REMOTE SENSING CLASSIFICATION; REMOTE SENSING DATA; SUPPORT VECTOR; SUPPORT VECTOR SELECTION AND ADAPTATION (SVSA); SYNTHETIC DATA; TEST DATA; TRAINING DATA;

EID: 79957656636     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2010.2096822     Document Type: Article
Times cited : (23)

References (43)
  • 1
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • DOI 10.1080/01431160512331314083
    • M. Pal and M. Mather, "Support vector machines for classification in remote sensing," Int. J. Remote Sens., vol. 26, no. 5, pp. 1007-1011, Mar. 2005. (Pubitemid 40231241)
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.5 , pp. 1007-1011
    • Pal, M.1    Mather, P.M.2
  • 2
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using svms and morphological profiles
    • Nov.
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using svms and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 3
    • 79951904873 scopus 로고    scopus 로고
    • Simulated multispectral imagery for tree species classification using support vector machines
    • Mar.
    • V. Heikkinen, T. Tokola, J. Parkkinen, I. Korpela, and T. Jaaskelainen, "Simulated multispectral imagery for tree species classification using support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 3, pp. 1355-1364, Mar. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.3 , pp. 1355-1364
    • Heikkinen, V.1    Tokola, T.2    Parkkinen, J.3    Korpela, I.4    Jaaskelainen, T.5
  • 4
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • DOI 10.1080/01431160110040323
    • C. Huang, L. S. Davis, and J. R. G. Townshend, "An assessment of support vector machines for land cover classification," Int. J. Remote Sens., vol. 23, no. 4, pp. 725-749, Feb. 2002. (Pubitemid 34119904)
    • (2002) International Journal of Remote Sensing , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 5
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 6
    • 36349007145 scopus 로고    scopus 로고
    • Fusion of support vector machines for classification of multisensor data
    • DOI 10.1109/TGRS.2007.898446
    • B. Waske and J. A. Benediktsson, "Fusion of support vector machines for classification of multisensor data," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3858-3866, Dec. 2007. (Pubitemid 350157824)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3858-3866
    • Waske, B.1    Benediktsson, J.A.2
  • 7
    • 77954757586 scopus 로고    scopus 로고
    • Semisupervised one-class support vector machines for classification of remote sensing data
    • Aug.
    • J. M. Mari, F. Bovolo, L. G. Chova, L. Bruzzone, and G. Camps-Valls, "Semisupervised one-class support vector machines for classification of remote sensing data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 8, pp. 3188-3197, Aug. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.8 , pp. 3188-3197
    • Mari, J.M.1    Bovolo, F.2    Chova, L.G.3    Bruzzone, L.4    Camps-Valls, G.5
  • 9
    • 84978982719 scopus 로고    scopus 로고
    • SVM classification: Its contents and challenges
    • Sep.
    • S. Yue, P. Li, and P. Hao, "SVM classification: Its contents and challenges," Appl. Math.-J. Chin. Univ., vol. 18, no. 3, pp. 332-342, Sep. 2003.
    • (2003) Appl. Math.-J. Chin. Univ. , vol.18 , Issue.3 , pp. 332-342
    • Yue, S.1    Li, P.2    Hao, P.3
  • 10
    • 0003893955 scopus 로고    scopus 로고
    • Ph.D. dissertation Technische Universitat Berlin, Berlin, Germany
    • B. Scholkopf, "Support vector learning," Ph.D. dissertation, Technische Universitat Berlin, Berlin, Germany, 1997.
    • (1997) Support Vector Learning
    • Scholkopf, B.1
  • 12
    • 67650759361 scopus 로고    scopus 로고
    • A kernel functions analysis for support vector machines for land cover classification
    • Oct.
    • T. Kavzoglu and I. Colkesen, "A kernel functions analysis for support vector machines for land cover classification," Int. J. Appl. Earth Obs. Geoinformation, vol. 11, no. 5, pp. 352-359, Oct. 2009.
    • (2009) Int. J. Appl. Earth Obs. Geoinformation , vol.11 , Issue.5 , pp. 352-359
    • Kavzoglu, T.1    Colkesen, I.2
  • 13
    • 2142643698 scopus 로고    scopus 로고
    • A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimension
    • Apr.
    • Y. Tan and J. Wang, "A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimension," IEEE Trans. Knowl. Data Eng., vol. 16, no. 4, pp. 385-395, Apr. 2004.
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.4 , pp. 385-395
    • Tan, Y.1    Wang, J.2
  • 14
    • 44049098082 scopus 로고    scopus 로고
    • Nearest neighbor classification of remote sensing images with the maximal margin principle
    • DOI 10.1109/TGRS.2008.916090, 4512325
    • E. Blanzieri and F. Melgani, "Nearest neighbor classification of remote sensing images with the maximal margin principle," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1804-1811, Jun. 2008. (Pubitemid 351711218)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.6 , pp. 1804-1811
    • Blanzieri, E.1    Melgani, F.2
  • 15
    • 58349083306 scopus 로고    scopus 로고
    • On mixtures of linear SVMs for nonlinear classification
    • Z. Fu and A. Robles-Kelly, "On mixtures of linear SVMs for nonlinear classification," in Proc. SSPR/SPR, 2008, pp. 489-499.
    • (2008) Proc. SSPR/SPR , pp. 489-499
    • Fu, Z.1    Robles-Kelly, A.2
  • 16
    • 0036812614 scopus 로고    scopus 로고
    • Support vector machine decision trees with rare event detection
    • DOI 10.1080/10255810215022
    • H.-M. Chi and O. K. Ersoy, "Support vector machine decision trees with rare event detection," Int. J. Smart Eng. Syst. Des., vol. 4, no. 4, pp. 225-242, 2002. (Pubitemid 35410355)
    • (2002) International Journal of Smart Engineering System Design , vol.4 , Issue.4 , pp. 225-242
    • Chi, H.-M.1    Ersoy, O.K.2
  • 17
    • 36349029276 scopus 로고    scopus 로고
    • Border vector detection and adaptation for classification of multispectral and hyperspectral remote sensing images
    • DOI 10.1109/TGRS.2007.900699
    • N. G. Kasapoglu and O. K. Ersoy, "Border vector detection and adaptation for classification of multispectral and hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3880-3893, Dec. 2007. (Pubitemid 350157826)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3880-3893
    • Kasapoglu, N.G.1    Ersoy, O.K.2
  • 18
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle and V. N. Vapnik, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, no. 1-3, pp. 131-159, Jan. 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 19
    • 22844442782 scopus 로고    scopus 로고
    • Automatic model selection for the optimization of SVM kernels
    • DOI 10.1016/j.patcog.2005.03.011, PII S0031320305001433
    • N. E. Ayat, M. Cheriet, and C. Y. Suen, "Automatic model selection for the optimization of svm kernels," Pattern Recognit., vol. 38, no. 10, pp. 1733-1745, Oct. 2005. (Pubitemid 41037105)
    • (2005) Pattern Recognition , vol.38 , Issue.10 , pp. 1733-1745
    • Ayat, N.E.1    Cheriet, M.2    Suen, C.Y.3
  • 20
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • DOI 10.1109/TGRS.2006.880628, 1717732
    • Y. Bazi and F. Melgani, "Toward an optimal SVM classification system for hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3374-3385, Nov. 2006. (Pubitemid 44711679)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 25
    • 85132031017 scopus 로고
    • LVQPAK: A software package for the correct application of learning vector quantization algorithms
    • T. Kohonen, J. Kangas, J. Laaksonen, and K. Torkkola, "LVQPAK: A software package for the correct application of learning vector quantization algorithms," in Proc. IJCNN, 1992, pp. 725-730.
    • (1992) Proc. IJCNN , pp. 725-730
    • Kohonen, T.1    Kangas, J.2    Laaksonen, J.3    Torkkola, K.4
  • 26
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Jan.
    • T. Cover and P. Hart, "Nearest neighbor pattern classification, " IEEE Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21-27, Jan. 1967.
    • (1967) IEEE Trans. Inf. Theory , vol.IT-13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 28
    • 17444390516 scopus 로고    scopus 로고
    • On the generalization ability of GRLVQ network
    • Apr.
    • B. Hammer, M. Strickert, and T. Villmann, "On the generalization ability of GRLVQ network," Neural Process. Lett., vol. 21, no. 2, pp. 109-120, Apr. 2005.
    • (2005) Neural Process. Lett. , vol.21 , Issue.2 , pp. 109-120
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 30
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 31
    • 17144374074 scopus 로고    scopus 로고
    • Fast SVM training algorithm with decomposition on very large data sets
    • Apr.
    • J. X. Dong, "Fast SVM training algorithm with decomposition on very large data sets," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 4, pp. 603-618, Apr. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.4 , pp. 603-618
    • Dong, J.X.1
  • 32
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • C. B. B. Schölkopf and A. Smola, Eds. Cambridge, MA: MIT Press
    • J. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods-Support Vector Learning, C. B. B. Schölkopf and A. Smola, Eds. Cambridge, MA: MIT Press, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning
    • Platt, J.1
  • 33
    • 2942565607 scopus 로고    scopus 로고
    • Comments on "A parallel mixture of SVMs for very large scale problems"
    • DOI 10.1162/089976604323057416
    • X. Liu, L. O. Hall, and K. W. Bowyer, "A parallel mixture of SVMs for very large scale problems," Neural Comput., vol. 16, no. 7, pp. 1345-1351, Jul. 2004. (Pubitemid 38740013)
    • (2004) Neural Computation , vol.16 , Issue.7 , pp. 1345-1351
    • Liu, X.1    Hall, L.O.2    Bowyer, K.W.3
  • 34
    • 4644337532 scopus 로고    scopus 로고
    • Complete cross-validation for nearest neighbor classifiers
    • M. Mullin and R. Sukthankar, "Complete cross-validation for nearest neighbor classifiers," in Proc. 17th ICML, 2000, pp. 639-646.
    • (2000) Proc. 17th ICML , pp. 639-646
    • Mullin, M.1    Sukthankar, R.2
  • 36
    • 24944464529 scopus 로고    scopus 로고
    • An adaptive fuzzy evidential nearest neighbor formulation for classifying remote sensing images
    • DOI 10.1109/TGRS.2005.848706
    • H. Zhu and O. Basir, "An adaptive fuzzy evidential nearest neighbor formulation for classifying remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 8, pp. 1874-1889, Aug. 2005. (Pubitemid 41329035)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.8 , pp. 1874-1889
    • Zhu, H.1    Basir, O.2
  • 39
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • Jul.
    • J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, "Neural network approaches versus statistical methods in classification of multisource remote sensing data," IEEE Trans. Geosci. Remote Sens., vol. 28, no. 4, pp. 540-552, Jul. 1990.
    • (1990) IEEE Trans. Geosci. Remote Sens. , vol.28 , Issue.4 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 41
    • 70350153353 scopus 로고    scopus 로고
    • An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery
    • Dec.
    • X. Huang and L. Zhang, "An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 12, pp. 4173-4185, Dec. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.12 , pp. 4173-4185
    • Huang, X.1    Zhang, L.2
  • 42
    • 33847762803 scopus 로고    scopus 로고
    • Feature extractions for small sample size classification problem
    • Mar.
    • B. C. Kuo and K. Y. Chang, "Feature extractions for small sample size classification problem," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 756-764, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 756-764
    • Kuo, B.C.1    Chang, K.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.