메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1349-1355

Deep neural networks for precipitation estimation from remotely sensed information

Author keywords

Deep neural networks; Kullback Leibler divergence; Precipitation; Remote sensing; Stacked denoising auto encoders

Indexed keywords

LEARNING SYSTEMS; PRECIPITATION (CHEMICAL); REMOTE SENSING;

EID: 85008254124     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CEC.2016.7743945     Document Type: Conference Paper
Times cited : (38)

References (21)
  • 2
    • 13244261088 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system
    • Y. Hong, K. Hsu, S. Sorooshian, and X. Gao, "Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system, " J. Appl. Meteorol., vol. 43, no. 12, pp. 1834-1852, 2004.
    • (2004) J. Appl. Meteorol. , vol.43 , Issue.12 , pp. 1834-1852
    • Hong, Y.1    Hsu, K.2    Sorooshian, S.3    Gao, X.4
  • 8
    • 84961392473 scopus 로고    scopus 로고
    • A deep neural network modeling framework to reduce bias in satellite precipitation products
    • Y. Tao, X. Gao, K. Hsu, S. Sorooshian, and A. Ihler, "A deep neural network modeling framework to reduce bias in satellite precipitation products, " J. Hydrometeorol., vol. 17, no. 3: 931-945, 2016.
    • (2016) J. Hydrometeorol. , vol.17 , Issue.3 , pp. 931-945
    • Tao, Y.1    Gao, X.2    Hsu, K.3    Sorooshian, S.4    Ihler, A.5
  • 9
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI, " Foundat. And Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Foundat. and Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 10
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, "Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion, " J. Mach. Learn Res., vol. 11, pp. 3371-3408, 2010.
    • (2010) J. Mach. Learn Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.5
  • 14
    • 84908476432 scopus 로고    scopus 로고
    • Feature ensemble learning based on sparse autoencoders for image classification
    • Y. Lu, L. Zhang, B. Wang, and J. Yang, "Feature ensemble learning based on sparse autoencoders for image classification, " in Proc. Int. Jt. Conf. Neural Netw. (IJCNN2014), pp. 1739-1745, 2014.
    • (2014) Proc. Int. Jt. Conf. Neural Netw. (IJCNN2014) , pp. 1739-1745
    • Lu, Y.1    Zhang, L.2    Wang, B.3    Yang, J.4
  • 19
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 20
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed information using artificial neural networks
    • K. Hsu, X. Gao, S. Sorooshian, and H. Gupta, "Precipitation estimation from remotely sensed information using artificial neural networks, " J. Appl. Meteorol., vol. 36, no. 9, pp. 1176-1190, 1997.
    • (1997) J. Appl. Meteorol. , vol.36 , Issue.9 , pp. 1176-1190
    • Hsu, K.1    Gao, X.2    Sorooshian, S.3    Gupta, H.4
  • 21
    • 77952649744 scopus 로고    scopus 로고
    • PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis
    • A. Behrangi, K. Hsu, B. Imam, S. Sorooshian, G. Huffman, and R. Kuligowski, "PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis, " J. Hydrometeorol., vol. 10, no. 6, pp. 1414-1429, 2009.
    • (2009) J. Hydrometeorol. , vol.10 , Issue.6 , pp. 1414-1429
    • Behrangi, A.1    Hsu, K.2    Imam, B.3    Sorooshian, S.4    Huffman, G.5    Kuligowski, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.