-
1
-
-
0030196364
-
Stacked regressions
-
Breiman L. Stacked regressions. Machine Learning 24 1 (1996) 49-64
-
(1996)
Machine Learning
, vol.24
, Issue.1
, pp. 49-64
-
-
Breiman, L.1
-
2
-
-
0342748795
-
Option decision trees with majority voting
-
Morgan Kaufman, San Francisco, CA, USA
-
Kohavi R., and Kunz C. Option decision trees with majority voting. Proceedings of the Fourteenth International Conference on Machine Learning (1997), Morgan Kaufman, San Francisco, CA, USA 161-169
-
(1997)
Proceedings of the Fourteenth International Conference on Machine Learning
, pp. 161-169
-
-
Kohavi, R.1
Kunz, C.2
-
3
-
-
0032645080
-
An empirical comparison of voting classification algorithms: bagging, boosting, and variants
-
Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36 1/2 (1999) 105-142
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
4
-
-
0034247206
-
Multiboosting: a technique for combining boosting and wagging
-
Webb G.I. Multiboosting: a technique for combining boosting and wagging. Machine Learning 40 2 (2000) 159-196
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
6
-
-
0032661927
-
Using correspondence analysis to combine classifiers
-
Merz C.J. Using correspondence analysis to combine classifiers. Machine Learning 36 1 (1999) 33-58
-
(1999)
Machine Learning
, vol.36
, Issue.1
, pp. 33-58
-
-
Merz, C.J.1
-
7
-
-
80053403826
-
Ensemble methods in machine learning
-
Kittler J., and Roli F. (Eds), Springer, Berlin
-
Dietterich T.G. Ensemble methods in machine learning. In: Kittler J., and Roli F. (Eds). Proceedings of the First International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science vol. 1857 (2000), Springer, Berlin 1-15
-
(2000)
Proceedings of the First International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
9
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Machine Learning 54 (2004) 255-273
-
(2004)
Machine Learning
, vol.54
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
10
-
-
0141921552
-
Online ensemble learning: an empirical study
-
Fern A., and Givan R. Online ensemble learning: an empirical study. Machine Learning 53 (2003) 71-109
-
(2003)
Machine Learning
, vol.53
, pp. 71-109
-
-
Fern, A.1
Givan, R.2
-
11
-
-
0003619255
-
Bias, variance, and arcing classifiers
-
Technical Report 460, Department of Statistics, University of California, Berkeley, CA
-
L. Breiman, Bias, variance, and arcing classifiers, Technical Report 460, Department of Statistics, University of California, Berkeley, CA, 1996.
-
(1996)
-
-
Breiman, L.1
-
12
-
-
0032280519
-
Boosting the margin: a new explanation for the effectiveness of voting methods
-
Schapire R.E., Freund Y., Bartlett P.L., and Lee W.S. Boosting the margin: a new explanation for the effectiveness of voting methods. Annals of Statistics 26 5 (1998) 1651-1686
-
(1998)
Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.L.3
Lee, W.S.4
-
13
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 1 (1997) 119-139
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
14
-
-
0034164230
-
Additive logistic regression: a statistical view of boosting
-
Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting. Annals of Statistics 28 2 (2000) 337-407
-
(2000)
Annals of Statistics
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
15
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
-
Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40 (2000) 139-157
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
16
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire R.E., and Singer Y. Improved boosting algorithms using confidence-rated predictions. Machine Learning 37 (1999) 297-336
-
(1999)
Machine Learning
, vol.37
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
21
-
-
33750823079
-
Multi-output regularized feature projection
-
Yu S., Yu K., Tresp V., and Kriegel H.-P. Multi-output regularized feature projection. IEEE Transactions on Knowledge and Data Engineering 18 12 (2006) 1600-1613
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.12
, pp. 1600-1613
-
-
Yu, S.1
Yu, K.2
Tresp, V.3
Kriegel, H.-P.4
-
23
-
-
28444473249
-
Supervised nonlinear dimensionality reduction for visualization and classification
-
Geng X., Zhan D.-C., and Zhou Z.-H. Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 35 6 (2005) 1098-1107
-
(2005)
IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics
, vol.35
, Issue.6
, pp. 1098-1107
-
-
Geng, X.1
Zhan, D.-C.2
Zhou, Z.-H.3
-
25
-
-
33750022335
-
Margin preserving projections
-
Lee Y., Ahn D., and Moon K. Margin preserving projections. Electronic Letters 42 21 (2006) 1249-1250
-
(2006)
Electronic Letters
, vol.42
, Issue.21
, pp. 1249-1250
-
-
Lee, Y.1
Ahn, D.2
Moon, K.3
-
26
-
-
33747744133
-
Local structure based supervised feature extraction
-
Zhao H., Sun S., Jing Z., and Yang J. Local structure based supervised feature extraction. Pattern Recognition 39 (2006) 1546-1550
-
(2006)
Pattern Recognition
, vol.39
, pp. 1546-1550
-
-
Zhao, H.1
Sun, S.2
Jing, Z.3
Yang, J.4
-
27
-
-
0032044986
-
On pattern classification with Sammon's nonlinear mapping-An experimental study
-
Lerner B., Guterman H., Aladjem M., Dinstein I., and Romem Y. On pattern classification with Sammon's nonlinear mapping-An experimental study. Pattern Recognition 31 4 (1998) 371-381
-
(1998)
Pattern Recognition
, vol.31
, Issue.4
, pp. 371-381
-
-
Lerner, B.1
Guterman, H.2
Aladjem, M.3
Dinstein, I.4
Romem, Y.5
-
28
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum J.B., de Silva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 5500 (2000) 2319-2323
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
de Silva, V.2
Langford, J.C.3
-
29
-
-
0002975747
-
Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new 'index of condensation'
-
Milton R.C., and Nelder J.A. (Eds), Academic Press, New York
-
Kruskal J.B. Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new 'index of condensation'. In: Milton R.C., and Nelder J.A. (Eds). Statistical Computing (1969), Academic Press, New York 427-440
-
(1969)
Statistical Computing
, pp. 427-440
-
-
Kruskal, J.B.1
-
31
-
-
29544443712
-
Projection pursuit for exploratory supervised classification
-
Lee E., Cook D., Klinke S., and Lumley T. Projection pursuit for exploratory supervised classification. Journal of Computational & Graphical Statistics 14 4 (2005) 831-846
-
(2005)
Journal of Computational & Graphical Statistics
, vol.14
, Issue.4
, pp. 831-846
-
-
Lee, E.1
Cook, D.2
Klinke, S.3
Lumley, T.4
-
33
-
-
0023843391
-
Analysis of hidden units in a layered network trained to classify sonar targets
-
Gorman R.P.R.P., and Sejnowski T.J. Analysis of hidden units in a layered network trained to classify sonar targets. Neural Networks 1 (1988) 75-89
-
(1988)
Neural Networks
, vol.1
, pp. 75-89
-
-
Gorman, R.P.R.P.1
Sejnowski, T.J.2
-
34
-
-
0029270805
-
Artificial neural networks for feature extraction and multivariate data projection
-
Mao J., and Jain A.K. Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks 6 2 (1995) 296-317
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, Issue.2
, pp. 296-317
-
-
Mao, J.1
Jain, A.K.2
-
36
-
-
0032822143
-
A comparative study of neural networks based feature extraction paradigms
-
Lerner B., Guterman H., Aladjem M., and Dinstein I. A comparative study of neural networks based feature extraction paradigms. Pattern Recognition Letters 20 1 (1999) 7-14
-
(1999)
Pattern Recognition Letters
, vol.20
, Issue.1
, pp. 7-14
-
-
Lerner, B.1
Guterman, H.2
Aladjem, M.3
Dinstein, I.4
-
37
-
-
21844454573
-
Error bounds for aggressive and conservative adaboost
-
Springer, Berlin, Guilford, UK
-
Kuncheva L.I. Error bounds for aggressive and conservative adaboost. Proceedings of MCS, Lecture Notes in Computer Science vol. 2709 (2003), Springer, Berlin, Guilford, UK 25-34
-
(2003)
Proceedings of MCS, Lecture Notes in Computer Science
, vol.2709
, pp. 25-34
-
-
Kuncheva, L.I.1
-
38
-
-
67349146148
-
-
UCI repository of machine learning databases
-
S. Hettich, C. Blake, C. Merz, UCI repository of machine learning databases, 1998 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
-
(1998)
-
-
Hettich, S.1
Blake, C.2
Merz, C.3
-
39
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 7 (1998) 1895-1923
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
40
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
41
-
-
0000646059
-
Learning internal representations by error propagation
-
Rumelhart D., and McClelland J. (Eds), MIT Press, Cambridge, MA
-
Rumelhart D., Hinton G., and Williams R.J. Learning internal representations by error propagation. In: Rumelhart D., and McClelland J. (Eds). Parallel Distributed Processing (1986), MIT Press, Cambridge, MA 318-362
-
(1986)
Parallel Distributed Processing
, pp. 318-362
-
-
Rumelhart, D.1
Hinton, G.2
Williams, R.J.3
-
45
-
-
26444493144
-
Boosting with early stooping: convergence and consistency
-
Zhang T., and Yu B. Boosting with early stooping: convergence and consistency. The Annals of Statistics 33 4 (2005) 1538-1579
-
(2005)
The Annals of Statistics
, vol.33
, Issue.4
, pp. 1538-1579
-
-
Zhang, T.1
Yu, B.2
-
48
-
-
0033870982
-
Improved generalization through explicit optimization of margins
-
Mason L., Bartlett P.L., and Baxter J. Improved generalization through explicit optimization of margins. Machine Learning 38 (2000) 243-255
-
(2000)
Machine Learning
, vol.38
, pp. 243-255
-
-
Mason, L.1
Bartlett, P.L.2
Baxter, J.3
-
49
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman L. Prediction games and arcing algorithms. Neural Computation 11 7 (1999) 1493-1517
-
(1999)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
52
-
-
0030370417
-
Bagging, boosting, and c4.5
-
AAAI Press, MIT Press, New York, Cambridge, MA
-
Quinlan J.R. Bagging, boosting, and c4.5. Proceedings of the Thirteenth National Conference on Artificial Intelligence (1996), AAAI Press, MIT Press, New York, Cambridge, MA 725-730
-
(1996)
Proceedings of the Thirteenth National Conference on Artificial Intelligence
, pp. 725-730
-
-
Quinlan, J.R.1
-
53
-
-
84949196941
-
Boosting first-order learning
-
96, Sydney, Australia, October, 1160, Springer, Berlin
-
J.R. Quinlan, Boosting first-order learning, in: Proceedings of the Algorithmic Learning Theory, Seventh International Workshop, ALT '96, Sydney, Australia, October 1996, vol. 1160, Springer, Berlin, 1996, pp. 143-155.
-
(1996)
Proceedings of the Algorithmic Learning Theory, Seventh International Workshop, ALT
, pp. 143-155
-
-
Quinlan, J.R.1
-
55
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learning 45 (2001) 5-32
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
57
-
-
0001886404
-
On overfitting and the effective number of hidden units
-
Mozer M.C., Smolensky P., Touretzky D.S., Elman J.L., and Weigend A.S. (Eds), Erlbaum Associates, Hillsdale, NJ
-
Weigend A.S. On overfitting and the effective number of hidden units. In: Mozer M.C., Smolensky P., Touretzky D.S., Elman J.L., and Weigend A.S. (Eds). Proceedings of the 1993 Connectionist Models Summer School (1993), Erlbaum Associates, Hillsdale, NJ 335-342
-
(1993)
Proceedings of the 1993 Connectionist Models Summer School
, pp. 335-342
-
-
Weigend, A.S.1
-
58
-
-
0001648184
-
Error-correcting output coding corrects bias and variance
-
Prieditis A., and Lemmer J.F. (Eds), Elsevier Science Publishers, Amsterdam
-
Kong E.B., and Dietterich T.G. Error-correcting output coding corrects bias and variance. In: Prieditis A., and Lemmer J.F. (Eds). Machine Learning: Proceedings of the Twelfth International Conference (1995), Elsevier Science Publishers, Amsterdam 275-283
-
(1995)
Machine Learning: Proceedings of the Twelfth International Conference
, pp. 275-283
-
-
Kong, E.B.1
Dietterich, T.G.2
-
59
-
-
0002872346
-
Bias plus variance decomposition for zero-one loss functions
-
Saitta L. (Ed), Morgan Kaufmann, Los Altos, CA
-
Kohavi R., and Wolpert D.H. Bias plus variance decomposition for zero-one loss functions. In: Saitta L. (Ed). Machine Learning: Proceedings of the Thirteenth International Conference (1996), Morgan Kaufmann, Los Altos, CA 275-283
-
(1996)
Machine Learning: Proceedings of the Thirteenth International Conference
, pp. 275-283
-
-
Kohavi, R.1
Wolpert, D.H.2
|