메뉴 건너뛰기




Volumn 42, Issue 9, 2009, Pages 1742-1760

Supervised projection approach for boosting classifiers

Author keywords

Boosting; Classification; Ensembles of classifiers; Supervised projections

Indexed keywords

ADABOOST; ALTERNATIVE APPROACH; BIAS VARIANCE DECOMPOSITION; BOOSTING; BOOSTING ALGORITHM; BOOSTING METHOD; CLASS LABELS; CLASSIFICATION; ENSEMBLES OF CLASSIFIERS; GENERALIZATION ERROR; NEW APPROACHES; NON-LINEAR; REAL-WORLD APPLICATION; SUPERVISED PROJECTIONS; UCI MACHINE LEARNING REPOSITORY; UNIFORM DISTRIBUTION; WEIGHTING SCHEME;

EID: 67349098005     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.12.023     Document Type: Article
Times cited : (20)

References (59)
  • 1
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman L. Stacked regressions. Machine Learning 24 1 (1996) 49-64
    • (1996) Machine Learning , vol.24 , Issue.1 , pp. 49-64
    • Breiman, L.1
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36 1/2 (1999) 105-142
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: a technique for combining boosting and wagging
    • Webb G.I. Multiboosting: a technique for combining boosting and wagging. Machine Learning 40 2 (2000) 159-196
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 6
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • Merz C.J. Using correspondence analysis to combine classifiers. Machine Learning 36 1 (1999) 33-58
    • (1999) Machine Learning , vol.36 , Issue.1 , pp. 33-58
    • Merz, C.J.1
  • 9
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Machine Learning 54 (2004) 255-273
    • (2004) Machine Learning , vol.54 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 10
    • 0141921552 scopus 로고    scopus 로고
    • Online ensemble learning: an empirical study
    • Fern A., and Givan R. Online ensemble learning: an empirical study. Machine Learning 53 (2003) 71-109
    • (2003) Machine Learning , vol.53 , pp. 71-109
    • Fern, A.1    Givan, R.2
  • 11
    • 0003619255 scopus 로고    scopus 로고
    • Bias, variance, and arcing classifiers
    • Technical Report 460, Department of Statistics, University of California, Berkeley, CA
    • L. Breiman, Bias, variance, and arcing classifiers, Technical Report 460, Department of Statistics, University of California, Berkeley, CA, 1996.
    • (1996)
    • Breiman, L.1
  • 12
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • Schapire R.E., Freund Y., Bartlett P.L., and Lee W.S. Boosting the margin: a new explanation for the effectiveness of voting methods. Annals of Statistics 26 5 (1998) 1651-1686
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.L.3    Lee, W.S.4
  • 13
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 1 (1997) 119-139
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 14
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting. Annals of Statistics 28 2 (2000) 337-407
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 15
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40 (2000) 139-157
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 16
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire R.E., and Singer Y. Improved boosting algorithms using confidence-rated predictions. Machine Learning 37 (1999) 297-336
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 25
    • 33750022335 scopus 로고    scopus 로고
    • Margin preserving projections
    • Lee Y., Ahn D., and Moon K. Margin preserving projections. Electronic Letters 42 21 (2006) 1249-1250
    • (2006) Electronic Letters , vol.42 , Issue.21 , pp. 1249-1250
    • Lee, Y.1    Ahn, D.2    Moon, K.3
  • 26
    • 33747744133 scopus 로고    scopus 로고
    • Local structure based supervised feature extraction
    • Zhao H., Sun S., Jing Z., and Yang J. Local structure based supervised feature extraction. Pattern Recognition 39 (2006) 1546-1550
    • (2006) Pattern Recognition , vol.39 , pp. 1546-1550
    • Zhao, H.1    Sun, S.2    Jing, Z.3    Yang, J.4
  • 27
    • 0032044986 scopus 로고    scopus 로고
    • On pattern classification with Sammon's nonlinear mapping-An experimental study
    • Lerner B., Guterman H., Aladjem M., Dinstein I., and Romem Y. On pattern classification with Sammon's nonlinear mapping-An experimental study. Pattern Recognition 31 4 (1998) 371-381
    • (1998) Pattern Recognition , vol.31 , Issue.4 , pp. 371-381
    • Lerner, B.1    Guterman, H.2    Aladjem, M.3    Dinstein, I.4    Romem, Y.5
  • 28
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 5500 (2000) 2319-2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 29
    • 0002975747 scopus 로고
    • Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new 'index of condensation'
    • Milton R.C., and Nelder J.A. (Eds), Academic Press, New York
    • Kruskal J.B. Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new 'index of condensation'. In: Milton R.C., and Nelder J.A. (Eds). Statistical Computing (1969), Academic Press, New York 427-440
    • (1969) Statistical Computing , pp. 427-440
    • Kruskal, J.B.1
  • 33
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • Gorman R.P.R.P., and Sejnowski T.J. Analysis of hidden units in a layered network trained to classify sonar targets. Neural Networks 1 (1988) 75-89
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.P.R.P.1    Sejnowski, T.J.2
  • 34
    • 0029270805 scopus 로고
    • Artificial neural networks for feature extraction and multivariate data projection
    • Mao J., and Jain A.K. Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks 6 2 (1995) 296-317
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.2 , pp. 296-317
    • Mao, J.1    Jain, A.K.2
  • 36
    • 0032822143 scopus 로고    scopus 로고
    • A comparative study of neural networks based feature extraction paradigms
    • Lerner B., Guterman H., Aladjem M., and Dinstein I. A comparative study of neural networks based feature extraction paradigms. Pattern Recognition Letters 20 1 (1999) 7-14
    • (1999) Pattern Recognition Letters , vol.20 , Issue.1 , pp. 7-14
    • Lerner, B.1    Guterman, H.2    Aladjem, M.3    Dinstein, I.4
  • 37
    • 21844454573 scopus 로고    scopus 로고
    • Error bounds for aggressive and conservative adaboost
    • Springer, Berlin, Guilford, UK
    • Kuncheva L.I. Error bounds for aggressive and conservative adaboost. Proceedings of MCS, Lecture Notes in Computer Science vol. 2709 (2003), Springer, Berlin, Guilford, UK 25-34
    • (2003) Proceedings of MCS, Lecture Notes in Computer Science , vol.2709 , pp. 25-34
    • Kuncheva, L.I.1
  • 38
    • 67349146148 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • S. Hettich, C. Blake, C. Merz, UCI repository of machine learning databases, 1998 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
    • (1998)
    • Hettich, S.1    Blake, C.2    Merz, C.3
  • 39
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 7 (1998) 1895-1923
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 40
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 41
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart D., and McClelland J. (Eds), MIT Press, Cambridge, MA
    • Rumelhart D., Hinton G., and Williams R.J. Learning internal representations by error propagation. In: Rumelhart D., and McClelland J. (Eds). Parallel Distributed Processing (1986), MIT Press, Cambridge, MA 318-362
    • (1986) Parallel Distributed Processing , pp. 318-362
    • Rumelhart, D.1    Hinton, G.2    Williams, R.J.3
  • 45
    • 26444493144 scopus 로고    scopus 로고
    • Boosting with early stooping: convergence and consistency
    • Zhang T., and Yu B. Boosting with early stooping: convergence and consistency. The Annals of Statistics 33 4 (2005) 1538-1579
    • (2005) The Annals of Statistics , vol.33 , Issue.4 , pp. 1538-1579
    • Zhang, T.1    Yu, B.2
  • 48
    • 0033870982 scopus 로고    scopus 로고
    • Improved generalization through explicit optimization of margins
    • Mason L., Bartlett P.L., and Baxter J. Improved generalization through explicit optimization of margins. Machine Learning 38 (2000) 243-255
    • (2000) Machine Learning , vol.38 , pp. 243-255
    • Mason, L.1    Bartlett, P.L.2    Baxter, J.3
  • 49
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman L. Prediction games and arcing algorithms. Neural Computation 11 7 (1999) 1493-1517
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 54
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • Rosset S., Zhu J., and Hastie T. Boosting as a regularized path to a maximum margin classifier. Journal of Machine Learning Research 5 (2004) 941-973
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 941-973
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 55
  • 57
    • 0001886404 scopus 로고
    • On overfitting and the effective number of hidden units
    • Mozer M.C., Smolensky P., Touretzky D.S., Elman J.L., and Weigend A.S. (Eds), Erlbaum Associates, Hillsdale, NJ
    • Weigend A.S. On overfitting and the effective number of hidden units. In: Mozer M.C., Smolensky P., Touretzky D.S., Elman J.L., and Weigend A.S. (Eds). Proceedings of the 1993 Connectionist Models Summer School (1993), Erlbaum Associates, Hillsdale, NJ 335-342
    • (1993) Proceedings of the 1993 Connectionist Models Summer School , pp. 335-342
    • Weigend, A.S.1
  • 58
    • 0001648184 scopus 로고
    • Error-correcting output coding corrects bias and variance
    • Prieditis A., and Lemmer J.F. (Eds), Elsevier Science Publishers, Amsterdam
    • Kong E.B., and Dietterich T.G. Error-correcting output coding corrects bias and variance. In: Prieditis A., and Lemmer J.F. (Eds). Machine Learning: Proceedings of the Twelfth International Conference (1995), Elsevier Science Publishers, Amsterdam 275-283
    • (1995) Machine Learning: Proceedings of the Twelfth International Conference , pp. 275-283
    • Kong, E.B.1    Dietterich, T.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.