-
1
-
-
34547105779
-
Multiclass corporate failure prediction by AdaBoost. M1
-
Alfaro E., Gámez M., and García N. Multiclass corporate failure prediction by AdaBoost. M1. Advanced Economic Research 13 (2007) 301-312
-
(2007)
Advanced Economic Research
, vol.13
, pp. 301-312
-
-
Alfaro, E.1
Gámez, M.2
García, N.3
-
2
-
-
41149115573
-
Bankruptcy forecasting: an empirical comparison of AdaBooost and neural networks
-
Alfaro E., García N., Gámez M., and Elizondo D. Bankruptcy forecasting: an empirical comparison of AdaBooost and neural networks. Decision Support Systems 45 (2008) 110-122
-
(2008)
Decision Support Systems
, vol.45
, pp. 110-122
-
-
Alfaro, E.1
García, N.2
Gámez, M.3
Elizondo, D.4
-
3
-
-
84980104458
-
Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
-
Altman E.L. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance 23 4 (1968) 589-609
-
(1968)
The Journal of Finance
, vol.23
, Issue.4
, pp. 589-609
-
-
Altman, E.L.1
-
5
-
-
0002554419
-
Financial ratios as predictors of failure, empirical research in accounting: Selected studied
-
Beaver W. Financial ratios as predictors of failure, empirical research in accounting: Selected studied. Journal of Accounting Research 4 3 (1966) 71-111
-
(1966)
Journal of Accounting Research
, vol.4
, Issue.3
, pp. 71-111
-
-
Beaver, W.1
-
6
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36 (1999) 105-139
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
7
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 24 2 (1994) 123-140
-
(1994)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
71349084078
-
-
Breiman, L. (1996). Bias, variance, and arcing classifiers (Tech. Rep. No. 460). Berkeley: Statistics Department, University of California at Berkeley.
-
Breiman, L. (1996). Bias, variance, and arcing classifiers (Tech. Rep. No. 460). Berkeley: Statistics Department, University of California at Berkeley.
-
-
-
-
9
-
-
80555137399
-
-
No. 486, Berkeley: Statistics Department, University of California at Berkeley
-
Breiman, L. (1997). Arcing the edge (Tech. Rep. No. 486). Berkeley: Statistics Department, University of California at Berkeley.
-
(1997)
Arcing the edge (Tech. Rep
-
-
Breiman, L.1
-
10
-
-
0346786584
-
Arcing classifiers
-
Breiman L. Arcing classifiers. Annuals of Statistics 26 3 (1998) 801-849
-
(1998)
Annuals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
12
-
-
0002637722
-
Mining for financial knowledge with CBR
-
Buta P. Mining for financial knowledge with CBR. AI Expert 9 10 (1994) 34-41
-
(1994)
AI Expert
, vol.9
, Issue.10
, pp. 34-41
-
-
Buta, P.1
-
13
-
-
0030143666
-
A survey of business failure with an emphasis on prediction methods and industrial applications
-
Dimitras A.I., Zanakis S.H., and Zopounidis C. A survey of business failure with an emphasis on prediction methods and industrial applications. European Journal of Operational Research 90 3 (1996) 487-513
-
(1996)
European Journal of Operational Research
, vol.90
, Issue.3
, pp. 487-513
-
-
Dimitras, A.I.1
Zanakis, S.H.2
Zopounidis, C.3
-
14
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Freund Y. Boosting a weak learning algorithm by majority. Information and Computation 121 2 (1995) 256-285
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
16
-
-
0031211090
-
A decision theoretic generalization of online learning and an application to boosting
-
Freund Y., and Schapire R.E. A decision theoretic generalization of online learning and an application to boosting. Journal of Computer and System Science 55 1 (1997) 119-139
-
(1997)
Journal of Computer and System Science
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
17
-
-
0003660631
-
Additive logistic regression
-
Stanford: Department of Statistics, Stanford University
-
Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: A statistical view of boosting (Tech. Rep.). Stanford: Department of Statistics, Stanford University.
-
(1998)
A statistical view of boosting (Tech. Rep
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
18
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman J. Greedy function approximation: A gradient boosting machine. The Annals of Statistic 29 5 (2001) 1189-1232
-
(2001)
The Annals of Statistic
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.1
-
20
-
-
0029755768
-
The impact of measurement scale and correlation structure on classification performance of inductive learning and statistical methods
-
Han I., Chandler J.S., and Liang T.P. The impact of measurement scale and correlation structure on classification performance of inductive learning and statistical methods. Expert System with Applications 10 2 (1996) 209-221
-
(1996)
Expert System with Applications
, vol.10
, Issue.2
, pp. 209-221
-
-
Han, I.1
Chandler, J.S.2
Liang, T.P.3
-
21
-
-
85054435084
-
Neural network ensembles, cross validation and active learning
-
Tesauro G., Touretzky D.S., and Leen T.K. (Eds), MIT Press, Cambridge, MA
-
Krogh A., and Vedelsby J. Neural network ensembles, cross validation and active learning. In: Tesauro G., Touretzky D.S., and Leen T.K. (Eds). Advances in neural information processing systems Vol. 7 (1995), MIT Press, Cambridge, MA 231-238
-
(1995)
Advances in neural information processing systems
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
24
-
-
71349085563
-
-
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Functional gradient techniques for combining hypotheses. In A. J. Smola, P. L. Bartlett, & B. Scholk (Eds.), Direct optimization of margins improves generalization in combined classifiers. In M. S. Kearns, S. Solla, & D. Cohn (Eds.), Advances in Neural Information Processing Systems, 11, Cambridge, MA: MIT Press.
-
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Functional gradient techniques for combining hypotheses. In A. J. Smola, P. L. Bartlett, & B. Scholk (Eds.), Direct optimization of margins improves generalization in combined classifiers. In M. S. Kearns, S. Solla, & D. Cohn (Eds.), Advances in Neural Information Processing Systems, Vol. 11, Cambridge, MA: MIT Press.
-
-
-
-
27
-
-
0000666375
-
Financial ratios and the probabilistic prediction of bankruptcy
-
Ohlson J. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 18 1 (1980) 109-131
-
(1980)
Journal of Accounting Research
, vol.18
, Issue.1
, pp. 109-131
-
-
Ohlson, J.1
-
30
-
-
0345159806
-
Putting it all together: Methods for combining neural networks
-
Cowan J.D., Tesauro G., and Alspector J. (Eds), Morgan Kaufman, San Mateo, CA
-
Perrone M.E. Putting it all together: Methods for combining neural networks. In: Cowan J.D., Tesauro G., and Alspector J. (Eds). Advances in Neural Information Processing Systems Vol. 6 (1994), Morgan Kaufman, San Mateo, CA 1188-1189
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 1188-1189
-
-
Perrone, M.E.1
-
32
-
-
33846314346
-
Bankruptcy prediction in banks and firms via statistical and intelligent techniques-a review
-
Ravi P., and Ravi K.V. Bankruptcy prediction in banks and firms via statistical and intelligent techniques-a review. European Journal of Operational Research 180 (2007) 1-28
-
(2007)
European Journal of Operational Research
, vol.180
, pp. 1-28
-
-
Ravi, P.1
Ravi, K.V.2
-
33
-
-
0025448521
-
The strength of weak learnability
-
Schapire R.E. The strength of weak learnability. Machine Learning 5 2 (1990) 197-227
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
35
-
-
0002595663
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1997). Boosting the margin: A new explanation for the effectiveness of voting methods. Machine Learning: Proceedings of 14th International Conference (pp. 322-330).
-
(1997)
Machine Learning: Proceedings of 14th International Conference
, pp. 322-330
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
36
-
-
0033281701
-
Improved boosting algorithm using confidence-rated predictions
-
Schapire R.E., and Singer Y. Improved boosting algorithm using confidence-rated predictions. Machine Learning 37 3 (1999) 297-336
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
37
-
-
0001935727
-
Using and expert system with inductive learning to evaluate business loans
-
Shaw M., and Gentry J. Using and expert system with inductive learning to evaluate business loans. Financial Management 17 3 (1998) 45-56
-
(1998)
Financial Management
, vol.17
, Issue.3
, pp. 45-56
-
-
Shaw, M.1
Gentry, J.2
-
38
-
-
0001953906
-
Methodological issues related to the estimation of financial distress prediction models
-
Zmijewski M.E. Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research 22 1 (1984) 59-82
-
(1984)
Journal of Accounting Research
, vol.22
, Issue.1
, pp. 59-82
-
-
Zmijewski, M.E.1
|