메뉴 건너뛰기




Volumn 28, Issue 1, 2016, Pages 29-40

Booster in High Dimensional Data Classification

Author keywords

Booster; feature selection; High dimensional data classification; Q statistic; stability

Indexed keywords

ALGORITHMS; BOOSTERS (ROCKET); CLUSTERING ALGORITHMS; CONVERGENCE OF NUMERICAL METHODS; DATA MINING; FEATURE EXTRACTION; FORECASTING;

EID: 84961644945     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2015.2458867     Document Type: Conference Paper
Times cited : (19)

References (77)
  • 1
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • T. Abeel, T. Helleputte, Y. V. de Peer, P. Dupont, and Y. Saeys, "Robust biomarker identification for cancer diagnosis with ensemble feature selection methods," Bioinformatics, vol. 26, no. 3, pp. 392-398, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    De Peer, Y.V.3    Dupont, P.4    Saeys, Y.5
  • 2
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • D. Aha and D. Kibler, "Instance-based learning algorithms," Mach. Learn., vol. 6, no. 1, pp. 37-66, 1991.
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.1    Kibler, D.2
  • 5
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine, "Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays," Proc. Nat. Acad. Sci., vol. 96, no. 12, pp. 6745-6750, 1999.
    • (1999) Proc. Nat. Acad. Sci. , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 7
    • 33745156863 scopus 로고    scopus 로고
    • Some theory for Fisher's linear discriminant function, naive Bayes, and some alternatives when there are many more variables than observations
    • P. J. Bickel and E. Levina, "Some theory for Fisher's linear discriminant function, naive Bayes, and some alternatives when there are many more variables than observations," Bernoulli, vol. 10, no. 6, pp. 989-1010, 2004.
    • (2004) Bernoulli , vol.10 , Issue.6 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2
  • 8
    • 77956220369 scopus 로고    scopus 로고
    • Kernel density estimation via diffusion
    • Z. I. Botev, J. F. Grotowski, and D. P. Kroese, "Kernel density estimation via diffusion," The Ann. Statist., vol. 38, no. 5, pp. 2916-2957, 2010.
    • (2010) The Ann. Statist. , vol.38 , Issue.5 , pp. 2916-2957
    • Botev, Z.I.1    Grotowski, J.F.2    Kroese, D.P.3
  • 9
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximization: A unifying framework for information theoretic feature selection
    • G. Brown, A. Pocock, M. J. Zhao, and M. Lujan, "Conditional likelihood maximization: A unifying framework for information theoretic feature selection," J. Mach. Learn. Res., vol. 13, no. 1, pp. 27-66, 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.1 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.J.3    Lujan, M.4
  • 12
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Corinna and V. Vapnik, "Support-vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Corinna, C.1    Vapnik, V.2
  • 14
    • 84892894732 scopus 로고    scopus 로고
    • A flexible microarray data simulataion model
    • D. Dembele, "A flexible microarray data simulataion model," Microarrays, vol. 2, no. 2, pp. 115-130, 2013.
    • (2013) Microarrays , vol.2 , Issue.2 , pp. 115-130
    • Dembele, D.1
  • 15
    • 84889095437 scopus 로고    scopus 로고
    • Analysis of feature selection stability on high dimension and small sample data
    • D. Dernoncourt, B. Hanczar, and J. D. Zucker, "Analysis of feature selection stability on high dimension and small sample data," Comput. Statist. Data Anal., vol. 71, pp. 681-693, 2014.
    • (2014) Comput. Statist. Data Anal. , vol.71 , pp. 681-693
    • Dernoncourt, D.1    Hanczar, B.2    Zucker, J.D.3
  • 16
    • 53849089038 scopus 로고    scopus 로고
    • High dimensional classification using features annealed independence rules
    • J. Fan and Y. Fan, "High dimensional classification using features annealed independence rules," Ann. Statist., vol. 36, no. 6, pp. 2605-2637, 2008.
    • (2008) Ann. Statist. , vol.36 , Issue.6 , pp. 2605-2637
    • Fan, J.1    Fan, Y.2
  • 17
    • 38349049320 scopus 로고    scopus 로고
    • To how many simultaneous hypothesis tests can normal, Student's t or bootstrap calibration be applied?
    • J. Fan, P. Hall, and Q. Yao, "To how many simultaneous hypothesis tests can normal, Student's t or bootstrap calibration be applied?," J. Am. Statist. Assoc., vol. 102, no. 480, pp. 1282-1288, 2007.
    • (2007) J. Am. Statist. Assoc. , vol.102 , Issue.480 , pp. 1282-1288
    • Fan, J.1    Hall, P.2    Yao, Q.3
  • 18
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • U. M. Fayyad and K. B. Irani, "Multi-interval discretization of continuous-valued attributes for classification learning," Artif. Intell., vol. 13, no. 2, pp. 1022-1027, 1993.
    • (1993) Artif. Intell. , vol.13 , Issue.2 , pp. 1022-1027
    • Fayyad, U.M.1    Irani, K.B.2
  • 19
    • 84863666181 scopus 로고    scopus 로고
    • Efficient feature selection filters for high dimensional data
    • A. J. Ferreira and M. A. T. Figueiredo, "Efficient feature selection filters for high dimensional data," Pattern Recog. Lett., vol. 33, no. 13, pp. 1794-1804, 2012.
    • (2012) Pattern Recog. Lett. , vol.33 , Issue.13 , pp. 1794-1804
    • Ferreira, A.J.1    Figueiredo, M.A.T.2
  • 20
    • 84877634882 scopus 로고    scopus 로고
    • Theoretical and empirical study on the potential inadequacy of mutual information for feature selection in classification
    • B. Franay, G. Doquire, and M. Verleysen, "Theoretical and empirical study on the potential inadequacy of mutual information for feature selection in classification," Neurocomputing, vol. 112, pp. 64-78, 2013
    • (2013) Neurocomputing , vol.112 , pp. 64-78
    • Franay, B.1    Doquire, G.2    Verleysen, M.3
  • 23
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • G. J. Gordon, R. V. Jensen, L. L. Hsiao, S. R. Gullans, J. E. Blumenstock, S. Ramaswamy, W. G. Richards, D. J. Sugarbaker, and R. Bueno, "Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma," Cancer Res., vol. 62, no. 17, pp. 4963-4967, 2002.
    • (2002) Cancer Res. , vol.62 , Issue.17 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    Hsiao, L.L.3    Gullans, S.R.4    Blumenstock, J.E.5    Ramaswamy, S.6    Richards, W.G.7    Sugarbaker, D.J.8    Bueno, R.9
  • 26
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," The J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
    • (2003) The J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 28
    • 84866469096 scopus 로고    scopus 로고
    • A variance reduction framework for stable feature selection
    • Y. Han and L. Yu, "A variance reduction framework for stable feature selection," Statist. Anal. Data Mining, vol. 5, no. 5, pp. 428-445, 2012.
    • (2012) Statist. Anal. Data Mining , vol.5 , Issue.5 , pp. 428-445
    • Han, Y.1    Yu, L.2
  • 30
    • 77958449045 scopus 로고    scopus 로고
    • Stable feature selection for biomarker discovery
    • Z. He and W. Yu, "Stable feature selection for biomarker discovery," Comput. Biol. Chem., vol. 34, no. 4, pp. 215-225, 2010.
    • (2010) Comput. Biol. Chem. , vol.34 , Issue.4 , pp. 215-225
    • He, Z.1    Yu, W.2
  • 31
    • 42049102625 scopus 로고    scopus 로고
    • Approaches to dimensionality reduction in proteomic biomarker studies
    • M. Hilario and A. Kalousis, "Approaches to dimensionality reduction in proteomic biomarker studies," Briefings Bioinf., vol. 9, no. 2, pp. 102-118, 2008.
    • (2008) Briefings Bioinf. , vol.9 , Issue.2 , pp. 102-118
    • Hilario, M.1    Kalousis, A.2
  • 32
    • 79955613590 scopus 로고    scopus 로고
    • Measuring relevance between discrete and continuous features based on neighborhood mutual information
    • Q. Hu, L. Zhang, D. Zhang, W. Pan, S. An, and W. Pedrycz, "Measuring relevance between discrete and continuous features based on neighborhood mutual information," Expert Syst. with Appl., vol. 38, no. 9, pp. 10737-10750, 2011.
    • (2011) Expert Syst. with Appl. , vol.38 , Issue.9 , pp. 10737-10750
    • Hu, Q.1    Zhang, L.2    Zhang, D.3    Pan, W.4    An, S.5    Pedrycz, W.6
  • 33
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • J. Hua, W. D. Tembe, and E. R. Dougherty, "Performance of feature-selection methods in the classification of high-dimension data," Pattern Recognit., vol. 42, no. 3, pp. 409-424, 2009.
    • (2009) Pattern Recognit. , vol.42 , Issue.3 , pp. 409-424
    • Hua, J.1    Tembe, W.D.2    Dougherty, E.R.3
  • 34
    • 43249103345 scopus 로고    scopus 로고
    • Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation
    • W. L. Hung, M. S. Yang, and D. H. Chen, "Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation," Pattern Recognit. Lett., vol. 29, no. 9, pp. 1317-1325, 2008.
    • (2008) Pattern Recognit. Lett. , vol.29 , Issue.9 , pp. 1317-1325
    • Hung, W.L.1    Yang, M.S.2    Chen, D.H.3
  • 35
    • 33746489367 scopus 로고    scopus 로고
    • An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors
    • P. Jafari and F. Azuaje, "An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors," BMC Med. Inf. Decision Making, vol. 6, no. 27, 2006.
    • (2006) BMC Med. Inf. Decision Making , vol.6 , Issue.27
    • Jafari, P.1    Azuaje, F.2
  • 36
    • 84883483361 scopus 로고    scopus 로고
    • MRMRe: An R package for parallelized mRMR ensemble feature selection
    • N. D. Jay, S. Papillon-Cavanagh, C. Olsen, G, Bontempi, and B. Haibe-Kains, "mRMRe: An R package for parallelized mRMR ensemble feature selection," Bioinformatics, vol. 29, no. 18, pp. 2365-2368, 2012.
    • (2012) Bioinformatics , vol.29 , Issue.18 , pp. 2365-2368
    • Jay, N.D.1    Papillon-Cavanagh, S.2    Olsen, C.3    Bontempi, G.4    Haibe-Kains, B.5
  • 39
    • 84891840571 scopus 로고    scopus 로고
    • A review of feature selection methods based on mutual information
    • R. V. Jorge and A. E. Pablo, "A review of feature selection methods based on mutual information," Neural Comput. Appl., vol. 24, no. 1, pp. 175-186, 2014.
    • (2014) Neural Comput. Appl. , vol.24 , Issue.1 , pp. 175-186
    • Jorge, R.V.1    Pablo, A.E.2
  • 40
    • 34248647608 scopus 로고    scopus 로고
    • Stability of feature selection algorithms: A study on high-dimensional spaces
    • A. Kalousis, J. Prados, and M. Hilario, "Stability of feature selection algorithms: A study on high-dimensional spaces," Knowl. Inf. Syst., vol. 12, no. 1, pp. 95-116, 2007.
    • (2007) Knowl. Inf. Syst. , vol.12 , Issue.1 , pp. 95-116
    • Kalousis, A.1    Prados, J.2    Hilario, M.3
  • 41
    • 19044391788 scopus 로고    scopus 로고
    • Relevance measures for subset variable selection in regression problems based on k-additive mutual information
    • I. Kojadinovic, "Relevance measures for subset variable selection in regression problems based on k-additive mutual information," Comput. Statist. Data Anal., vol. 49, no. 4, pp. 1205-1227, 2005.
    • (2005) Comput. Statist. Data Anal. , vol.49 , Issue.4 , pp. 1205-1227
    • Kojadinovic, I.1
  • 43
    • 38149090506 scopus 로고    scopus 로고
    • A stability index for feature selection
    • L. I. Kuncheva, "A stability index for feature selection," in Proc. Artif. Intell. Appl., pp. 421-427, 2007.
    • (2007) Proc. Artif. Intell. Appl. , pp. 421-427
    • Kuncheva, L.I.1
  • 44
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • H. Liu, J. Li, and L.Wong, "A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns," Genome Informatics Series, vol. 13, pp. 51-60, 2002.
    • (2002) Genome Informatics Series , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 46
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • R. S. Marko, and I. Kononenko, "Theoretical and empirical analysis of ReliefF and RReliefF," Machine learning, vol. 53, no. 1-2, pp. 23-69, 2003.
    • (2003) Machine Learning , vol.53 , Issue.1-2 , pp. 23-69
    • Marko, R.S.1    Kononenko, I.2
  • 49
    • 47049102021 scopus 로고    scopus 로고
    • Information-theoretic feature selection in microarray data using variable complementarity
    • P. E. Meyer, C. Schretter, and G. Bontempi, "Information-theoretic feature selection in microarray data using variable complementarity," IEEE J. Sel. Topics Signal Process., vol. 2, no. 3, pp. 261-274, 2008.
    • (2008) IEEE J. Sel. Topics Signal Process. , vol.2 , Issue.3 , pp. 261-274
    • Meyer, P.E.1    Schretter, C.2    Bontempi, G.3
  • 50
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy
    • Aug.
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 53
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larranaga, "A review of feature selection techniques in bioinformatics," Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 54
    • 79952607358 scopus 로고    scopus 로고
    • Identification of direct downstream targets of Dlx5 during early inner ear development
    • S. A. Sajan, J. L. Rubenstein, M. E. Warchol, and M. Lovett, "Identification of direct downstream targets of Dlx5 during early inner ear development," Human Molecular Genetics, vol. 20, no. 7, pp. 1262-1273, 2011.
    • (2011) Human Molecular Genetics , vol.20 , Issue.7 , pp. 1262-1273
    • Sajan, S.A.1    Rubenstein, J.L.2    Warchol, M.E.3    Lovett, M.4
  • 56
    • 37249068467 scopus 로고    scopus 로고
    • Feature subspace ensembles: A parallel classifier combination scheme using feature selection
    • H. Silva and A. Fred, "Feature subspace ensembles: A parallel classifier combination scheme using feature selection," Multiple Classifier Syst., vol. 4472, pp. 261-270, 2007.
    • (2007) Multiple Classifier Syst. , vol.4472 , pp. 261-270
    • Silva, H.1    Fred, A.2
  • 61
    • 78149286082 scopus 로고    scopus 로고
    • Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality
    • Nov.
    • P. Somol and J. Novovicova, "Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 1921-1939, Nov. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.11 , pp. 1921-1939
    • Somol, P.1    Novovicova, J.2
  • 62
    • 84870441851 scopus 로고    scopus 로고
    • A fast clustering-based feature subset selection algorithm for high-dimensional data
    • Jan.
    • Q. Song, J. Ni, and G. Wang, "A fast clustering-based feature subset selection algorithm for high-dimensional data," IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 1-14, Jan. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.1 , pp. 1-14
    • Song, Q.1    Ni, J.2    Wang, G.3
  • 67
    • 77955397866 scopus 로고    scopus 로고
    • Local-learning-based feature selection for high-dimensional data analysis
    • Sep.
    • Y. Sun, S. Todorovic, and S. Goodison, "Local-learning-based feature selection for high-dimensional data analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1610-1626, Sep. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.9 , pp. 1610-1626
    • Sun, Y.1    Todorovic, S.2    Goodison, S.3
  • 68
    • 79958861311 scopus 로고    scopus 로고
    • Feature-subspace aggregating: Ensembles for stable and unstable learners
    • K. M. Ting, J. R. Wells, S. C. Tan, S. W. Teng, and G. I. Webb, "Feature-subspace aggregating: Ensembles for stable and unstable learners," Mach. Learn., vol. 82, no. 3, pp. 375-397, 2011.
    • (2011) Mach. Learn. , vol.82 , Issue.3 , pp. 375-397
    • Ting, K.M.1    Wells, J.R.2    Tan, S.C.3    Teng, S.W.4    Webb, G.I.5
  • 74
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • B. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. Stone, D. Ward, K. Williams, and H. Zhao, "Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data," Bioinformatics, vol. 19, no. 13, pp. 1636-1643, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3    McMurray, W.4    Mor, G.5    Stone, K.6    Ward, D.7    Williams, K.8    Zhao, H.9
  • 75
    • 84876013845 scopus 로고    scopus 로고
    • Robust variable selection through MAVE
    • W. Yao and Q. Wang, "Robust variable selection through MAVE," Comput. Statist. Data Anal., vol. 63, pp. 42-49, 2013.
    • (2013) Comput. Statist. Data Anal. , vol.63 , pp. 42-49
    • Yao, W.1    Wang, Q.2
  • 77
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," The J. Mach. Learn. Res., vol. 5, no. 2, pp. 1205-1224, 2004.
    • (2004) The J. Mach. Learn. Res. , vol.5 , Issue.2 , pp. 1205-1224
    • Yu, L.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.