메뉴 건너뛰기




Volumn 9, Issue 8, 2016, Pages 3439-3451

Automatic Change Detection in High-Resolution Remote Sensing Images by Using a Multiple Classifier System and Spectral-Spatial Features

Author keywords

Change detection (CD); extreme learning machines (ELMs); multiple classifier; spatial information

Indexed keywords

DEFORESTATION; IMAGE RECONSTRUCTION; LEARNING SYSTEMS; NEAREST NEIGHBOR SEARCH; OBJECT RECOGNITION; SAMPLING; SIGNAL DETECTION;

EID: 84963627003     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2016.2541678     Document Type: Article
Times cited : (79)

References (65)
  • 1
    • 0024855524 scopus 로고
    • Review article digital change detection techniques using remotely-sensed data
    • A. Singh, "Review article digital change detection techniques using remotely-sensed data," Int. J. Remote Sens., vol. 10, pp. 989-1003, 1989.
    • (1989) Int. J. Remote Sens. , vol.10 , pp. 989-1003
    • Singh, A.1
  • 2
    • 84907459248 scopus 로고    scopus 로고
    • Multi-level spatial analysis for change detection of urban vegetation at individual tree scale
    • J. Zhou, B. Yu, and J. Qin, "Multi-level spatial analysis for change detection of urban vegetation at individual tree scale," Remote Sens., vol. 6, pp. 9086-9103, 2014.
    • (2014) Remote Sens. , vol.6 , pp. 9086-9103
    • Zhou, J.1    Yu, B.2    Qin, J.3
  • 4
    • 84920109645 scopus 로고    scopus 로고
    • Remote sensing change detection for ecological monitoring in United States protected areas
    • K. S.Willis, "Remote sensing change detection for ecological monitoring in United States protected areas," Biol. Conserv., vol. 182, pp. 233-242, 2015.
    • (2015) Biol. Conserv. , vol.182 , pp. 233-242
    • Willis, K.S.1
  • 5
    • 84888083698 scopus 로고    scopus 로고
    • Analysis of sub-pixel snow and ice extent over the extratropical Andes using spectral unmixing of historical Landsat imagery
    • G. Cortés, M. Girotto, and S. A. Margulis, "Analysis of sub-pixel snow and ice extent over the extratropical Andes using spectral unmixing of historical Landsat imagery," Remote Sens. Environ., vol. 141, pp. 64-78, 2014.
    • (2014) Remote Sens. Environ. , vol.141 , pp. 64-78
    • Cortés, G.1    Girotto, M.2    Margulis, S.A.3
  • 6
    • 84866675648 scopus 로고    scopus 로고
    • Assimilating process context information of cellular automata into change detection for monitoring land use changes
    • X. Li, Y. Zhang, X. Liu, and Y. Chen, "Assimilating process context information of cellular automata into change detection for monitoring land use changes," Int. J. Geog. Inf. Sci., vol. 26, pp. 1667-1687, 2012.
    • (2012) Int. J. Geog. Inf. Sci. , vol.26 , pp. 1667-1687
    • Li, X.1    Zhang, Y.2    Liu, X.3    Chen, Y.4
  • 7
    • 84875662316 scopus 로고    scopus 로고
    • Object-based urban change detection analyzing high resolution optical satellite images
    • M. Boldt, A. Thiele, and K. Schulz, "Object-based urban change detection analyzing high resolution optical satellite images," in Proc. SPIE Remote Sens., 2012, pp. 85380E-1-85380E-9.
    • (2012) Proc. SPIE Remote Sens. , pp. 85380E1-85380E9
    • Boldt, M.1    Thiele, A.2    Schulz, K.3
  • 8
    • 84860338492 scopus 로고    scopus 로고
    • Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification
    • May
    • B. Demir, F. Bovolo, and L. Bruzzone, "Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1930-1941, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1930-1941
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 9
    • 85027927548 scopus 로고    scopus 로고
    • Automatic change detection in high-resolution remote-sensing images by means of level set evolution and support vector machine classification
    • G. Cao, Y. Li, Y. Liu, and Y. Shang, "Automatic change detection in high-resolution remote-sensing images by means of level set evolution and support vector machine classification," Int. J. Remote Sens., vol. 35, pp. 6255-6270, 2014.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 6255-6270
    • Cao, G.1    Li, Y.2    Liu, Y.3    Shang, Y.4
  • 10
    • 84863479380 scopus 로고    scopus 로고
    • Supervised change detection in VHR images using contextual information and support vector machines
    • M. Volpi, D. Tuia, F. Bovolo,M. Kanevski, and L. Bruzzone, "Supervised change detection in VHR images using contextual information and support vector machines," Int. J. Appl. Earth Observ. Geoinf., vol. 20, pp. 77-85, 2013.
    • (2013) Int. J. Appl. Earth Observ. Geoinf. , vol.20 , pp. 77-85
    • Volpi, M.1    Tuia, D.2    Bovolo, F.3    Kanevski, M.4    Bruzzone, L.5
  • 11
    • 77953132953 scopus 로고    scopus 로고
    • A support vector domain method for change detection in multitemporal images
    • F. Bovolo, G. Camps-Valls, and L. Bruzzone, "A support vector domain method for change detection in multitemporal images," Pattern Recognit. Lett., vol. 31, pp. 1148-1154, 2010.
    • (2010) Pattern Recognit. Lett. , vol.31 , pp. 1148-1154
    • Bovolo, F.1    Camps-Valls, G.2    Bruzzone, L.3
  • 12
    • 77953718575 scopus 로고    scopus 로고
    • A context-sensitive technique robust to registration noise for change detection in VHR multispectral images
    • Jul.
    • S. Marchesi, F. Bovolo, and L. Bruzzone, "A context-sensitive technique robust to registration noise for change detection in VHR multispectral images," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1877-1889, Jul. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1877-1889
    • Marchesi, S.1    Bovolo, F.2    Bruzzone, L.3
  • 13
    • 77954758347 scopus 로고    scopus 로고
    • Unsupervised change detection in multispectral remotely sensed imagery with level set methods
    • Aug.
    • Y. Bazi, F. Melgani, and H. D. Al-Sharari, "Unsupervised change detection in multispectral remotely sensed imagery with level set methods," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 8, pp. 3178-3187, Aug. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.8 , pp. 3178-3187
    • Bazi, Y.1    Melgani, F.2    Al-Sharari, H.D.3
  • 15
    • 84867243026 scopus 로고    scopus 로고
    • Lidar-based change detection and change-type determination in urban areas
    • T.-A. Teo and T.-Y. Shih, "Lidar-based change detection and change-type determination in urban areas," Int. J. Remote Sens., vol. 34, pp. 968-981, 2013.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 968-981
    • Teo, T.-A.1    Shih, T.-Y.2
  • 16
    • 84871725096 scopus 로고    scopus 로고
    • Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach
    • Jan.
    • B. Demir, F. Bovolo, and L. Bruzzone, "Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 300-312, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 300-312
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 17
    • 84897049246 scopus 로고    scopus 로고
    • A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system
    • M. Roy, S. Ghosh, and A. Ghosh, "A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system," Inf. Sci., vol. 269, pp. 35-47, 2014.
    • (2014) Inf. Sci. , vol.269 , pp. 35-47
    • Roy, M.1    Ghosh, S.2    Ghosh, A.3
  • 18
    • 75449115173 scopus 로고    scopus 로고
    • Fast object-level change detection for VHR images
    • Jan.
    • C. Huo, Z. Zhou, H. Lu, C. Pan, and K. Chen, "Fast object-level change detection for VHR images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 1, pp. 118-122, Jan. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.1 , pp. 118-122
    • Huo, C.1    Zhou, Z.2    Lu, H.3    Pan, C.4    Chen, K.5
  • 19
    • 85027954143 scopus 로고    scopus 로고
    • A critical synthesis of remotely sensed optical image change detection techniques
    • A. P. Tewkesbury, A. J. Comber, N. J. Tate, A. Lamb, and P. F. Fisher, "A critical synthesis of remotely sensed optical image change detection techniques," Remote Sens. Environ., vol. 160, pp. 1-14, 2015.
    • (2015) Remote Sens. Environ. , vol.160 , pp. 1-14
    • Tewkesbury, A.P.1    Comber, A.J.2    Tate, N.J.3    Lamb, A.4    Fisher, P.F.5
  • 20
    • 82055185061 scopus 로고    scopus 로고
    • Histogram thresholding for unsupervised change detection of remote sensing images
    • S. Patra, S. Ghosh, and A. Ghosh, "Histogram thresholding for unsupervised change detection of remote sensing images," Int. J. Remote Sens., vol. 32, pp. 6071-6089, 2011.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 6071-6089
    • Patra, S.1    Ghosh, S.2    Ghosh, A.3
  • 21
    • 0033707763 scopus 로고    scopus 로고
    • Automatic analysis of the difference image for unsupervised change detection
    • May
    • L. Bruzzone and D. F. Prieto, "Automatic analysis of the difference image for unsupervised change detection," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1171-1182, May 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.3 , pp. 1171-1182
    • Bruzzone, L.1    Prieto, D.F.2
  • 22
    • 84890044760 scopus 로고    scopus 로고
    • Unsupervised change detection using fuzzy c-means and MRF from remotely sensed images
    • M. Hao, H. Zhang,W. Shi, and K. Deng, "Unsupervised change detection using fuzzy c-means and MRF from remotely sensed images," Remote Sens. Lett., vol. 4, pp. 1185-1194, 2013.
    • (2013) Remote Sens. Lett. , vol.4 , pp. 1185-1194
    • Hao, M.1    Zhang, H.2    Shi, W.3    Deng, K.4
  • 23
    • 84866411480 scopus 로고    scopus 로고
    • An improved MRF-based change detection approach for multitemporal remote sensing imagery
    • Y. Chen and Z. Cao, "An improved MRF-based change detection approach for multitemporal remote sensing imagery," Signal Process., vol. 93, pp. 163-175, 2013.
    • (2013) Signal Process. , vol.93 , pp. 163-175
    • Chen, Y.1    Cao, Z.2
  • 24
    • 84874545870 scopus 로고    scopus 로고
    • A novel framework for the design of changedetection systems for very-high-resolution remote sensing images
    • Mar.
    • L. Bruzzone and F. Bovolo, "A novel framework for the design of changedetection systems for very-high-resolution remote sensing images," Proc. IEEE, vol. 101, no. 3, pp. 609-630, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 609-630
    • Bruzzone, L.1    Bovolo, F.2
  • 25
    • 84905029227 scopus 로고    scopus 로고
    • Objectbased change detection in wind storm-damaged forest using highresolution multispectral images
    • N. Chehata, C. Orny, S. Boukir, D. Guyon, and J. Wigneron, "Objectbased change detection in wind storm-damaged forest using highresolution multispectral images," Int. J. Remote Sens., vol. 35, pp. 4758-4777, 2014.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 4758-4777
    • Chehata, N.1    Orny, C.2    Boukir, S.3    Guyon, D.4    Wigneron, J.5
  • 26
    • 84879967034 scopus 로고    scopus 로고
    • Fault-tolerant building change detection from urban high-resolution remote sensing imagery
    • Sep.
    • Y. Tang, X. Huang, and L. Zhang, "Fault-tolerant building change detection from urban high-resolution remote sensing imagery," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5, pp. 1060-1064, Sep. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.5 , pp. 1060-1064
    • Tang, Y.1    Huang, X.2    Zhang, L.3
  • 27
    • 84876726723 scopus 로고    scopus 로고
    • Change detection from remotely sensed images: From pixel-based to object-based approaches
    • M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, "Change detection from remotely sensed images: From pixel-based to object-based approaches," ISPRS J. Photogramm. Remote Sens., vol. 80, pp. 91-106, 2013.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.80 , pp. 91-106
    • Hussain, M.1    Chen, D.2    Cheng, A.3    Wei, H.4    Stanley, D.5
  • 28
    • 77950368692 scopus 로고    scopus 로고
    • Texture-based classification of sub-Antarctic vegetation communities on Heard Island
    • H. Murray, A. Lucieer, and R. Williams, "Texture-based classification of sub-Antarctic vegetation communities on Heard Island," Int. J. Appl. Earth Observ. Geoinf., vol. 12, pp. 138-149, 2010.
    • (2010) Int. J. Appl. Earth Observ. Geoinf. , vol.12 , pp. 138-149
    • Murray, H.1    Lucieer, A.2    Williams, R.3
  • 29
    • 70350655559 scopus 로고    scopus 로고
    • Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
    • Nov.
    • D. Tuia, F. Pacifici, M. Kanevski, and W. J. Emery, "Classification of very high spatial resolution imagery using mathematical morphology and support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11, pp. 3866-3879, Nov. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.11 , pp. 3866-3879
    • Tuia, D.1    Pacifici, F.2    Kanevski, M.3    Emery, W.J.4
  • 30
    • 84910007281 scopus 로고    scopus 로고
    • A survey of commonly used ensemble-based classification techniques
    • A. Jurek, Y. Bi, S. Wu, and C. Nugent, "A survey of commonly used ensemble-based classification techniques," Knowl. Eng. Rev., vol. 29, pp. 551-581, 2014.
    • (2014) Knowl. Eng. Rev. , vol.29 , pp. 551-581
    • Jurek, A.1    Bi, Y.2    Wu, S.3    Nugent, C.4
  • 31
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • L. Breiman, "Heuristics of instability and stabilization in model selection," Ann. Stat., vol. 24, pp. 2350-2383, 1996.
    • (1996) Ann. Stat. , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 32
    • 84947604413 scopus 로고    scopus 로고
    • Bagging and boosting for the nearest mean classifier: Effects of sample size on diversity and accuracy
    • New York, NY, USA: Springer
    • M. Skurichina, L. I. Kuncheva, and R. P. Duin, "Bagging and boosting for the nearest mean classifier: Effects of sample size on diversity and accuracy," in Multiple Classifier Systems. New York, NY, USA: Springer, 2002, pp. 62-71.
    • (2002) Multiple Classifier Systems. , pp. 62-71
    • Skurichina, M.1    Kuncheva, L.I.2    Duin, R.P.3
  • 33
    • 77955622534 scopus 로고    scopus 로고
    • An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data
    • S. Datta, V. Pihur, and S. Datta, "An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data," BMC Bioinformat., vol. 11, p. 1, 2010.
    • (2010) BMC Bioinformat. , vol.11 , pp. 1
    • Datta, S.1    Pihur, V.2    Datta, S.3
  • 34
    • 77749242610 scopus 로고    scopus 로고
    • Ensemble numeric prediction of nearest-neighbor learning
    • L. He, Q. Song, J. Shen, and Z. Hai, "Ensemble numeric prediction of nearest-neighbor learning," Inf. Technol. J., vol. 9, pp. 535-544, 2010.
    • (2010) Inf. Technol. J. , vol.9 , pp. 535-544
    • He, L.1    Song, Q.2    Shen, J.3    Hai, Z.4
  • 36
    • 85027954351 scopus 로고    scopus 로고
    • Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles
    • Sep.
    • J. Xia, M. Dalla Mura, J. Chanussot, P. Du, and X. He, "Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 9, pp. 4768-4786, Sep. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.9 , pp. 4768-4786
    • Xia, J.1    Dalla Mura, M.2    Chanussot, J.3    Du, P.4    He, X.5
  • 37
    • 77956456333 scopus 로고    scopus 로고
    • Sparse ensembles using weighted combination methods based on linear programming
    • L. Zhang and W.-D. Zhou, "Sparse ensembles using weighted combination methods based on linear programming," Pattern Recognit., vol. 44, pp. 97-106, 2011.
    • (2011) Pattern Recognit. , vol.44 , pp. 97-106
    • Zhang, L.1    Zhou, W.-D.2
  • 38
    • 84910022851 scopus 로고    scopus 로고
    • Classifier ensemble based class weightening
    • H. Parvin and H. Alizadeh, "Classifier ensemble based class weightening," Amer. J. Sci. Res., vol. 19, pp. 84-90, 2011.
    • (2011) Amer. J. Sci. Res. , vol.19 , pp. 84-90
    • Parvin, H.1    Alizadeh, H.2
  • 39
    • 80052973878 scopus 로고    scopus 로고
    • A Bayesian approach for combining ensembles of GP classifiers
    • New York, NY, USA: Springer
    • C. De Stefano, F. Fontanella, G. Folino, and A. S. Di Freca, "A Bayesian approach for combining ensembles of GP classifiers," in Multiple Classifier Systems. New York, NY, USA: Springer, 2011, pp. 26-35.
    • (2011) Multiple Classifier Systems. , pp. 26-35
    • De Stefano, C.1    Fontanella, F.2    Folino, G.3    Di Freca, A.S.4
  • 41
    • 80052987867 scopus 로고    scopus 로고
    • Classification by cluster analysis: A new meta-learning based approach
    • New York, NY, USA: Springer
    • A. Jurek, Y. Bi, S. Wu, and C. Nugent, "Classification by cluster analysis: A new meta-learning based approach," in Multiple Classifier Systems. New York, NY, USA: Springer, 2011, pp. 259-268.
    • (2011) Multiple Classifier Systems. , pp. 259-268
    • Jurek, A.1    Bi, Y.2    Wu, S.3    Nugent, C.4
  • 42
    • 84945260236 scopus 로고    scopus 로고
    • Automatic classification of remote sensing images using multiple classifier systems
    • B. Yang, C. Cao, Y. Xing, and X. Li, "Automatic classification of remote sensing images using multiple classifier systems," Math. Prob. Eng., vol. 2015, 2015, pp. 1-10.
    • (2015) Math. Prob. Eng. , vol.2015 , pp. 1-10
    • Yang, B.1    Cao, C.2    Xing, Y.3    Li, X.4
  • 43
    • 84907436729 scopus 로고    scopus 로고
    • Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images
    • Mar.
    • M. A. Bencherif, Y. Bazi, A. Guessoum, N. Alajlan, F. Melgani, and H. AlHichri, "Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 3, pp. 527-531, Mar. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.3 , pp. 527-531
    • Bencherif, M.A.1    Bazi, Y.2    Guessoum, A.3    Alajlan, N.4    Melgani, F.5    AlHichri, H.6
  • 44
    • 84991885938 scopus 로고    scopus 로고
    • Combining extreme learning machines using support vector machines for breast tissue classification
    • M. R. Daliri, "Combining extreme learning machines using support vector machines for breast tissue classification," Comput. Methods Biomech. Biomed. Eng., vol. 18, pp. 1-7, 2013.
    • (2013) Comput. Methods Biomech. Biomed. Eng. , vol.18 , pp. 1-7
    • Daliri, M.R.1
  • 45
    • 84911944987 scopus 로고    scopus 로고
    • Semi-supervised and unsupervised extreme learning machines
    • Dec.
    • G. Huang, S. Song, J. N. Gupta, and C. Wu, "Semi-supervised and unsupervised extreme learning machines," IEEE Trans. Cybern., vol. 44, no. 12, pp. 2405-2417, Dec. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.12 , pp. 2405-2417
    • Huang, G.1    Song, S.2    Gupta, J.N.3    Wu, C.4
  • 46
    • 33644682829 scopus 로고    scopus 로고
    • Categorical missing data imputation for software cost estimation by multinomial logistic regression
    • P. Sentas and L. Angelis, "Categorical missing data imputation for software cost estimation by multinomial logistic regression," J. Syst. Software, vol. 79, pp. 404-414, 2006.
    • (2006) J. Syst. Software , vol.79 , pp. 404-414
    • Sentas, P.1    Angelis, L.2
  • 47
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 48
    • 84927624381 scopus 로고    scopus 로고
    • A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination
    • K. Tan, J. Hu, J. Li, and P. Du, "A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination," ISPRS J. Photogramm. Remote Sens., vol. 105, pp. 19-29, 2015.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.105 , pp. 19-29
    • Tan, K.1    Hu, J.2    Li, J.3    Du, P.4
  • 50
    • 84921770473 scopus 로고    scopus 로고
    • Improving kNN multi-label classification in prototype selection scenarios using class proposals
    • J. Calvo-Zaragoza, J. J. Valero-Mas, and J. R. Rico-Juan, "Improving kNN multi-label classification in prototype selection scenarios using class proposals," Pattern Recognit., vol. 48, pp. 1608-1622, 2014.
    • (2014) Pattern Recognit. , vol.48 , pp. 1608-1622
    • Calvo-Zaragoza, J.1    Valero-Mas, J.J.2    Rico-Juan, J.R.3
  • 51
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Aug.
    • T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 52
    • 77953872402 scopus 로고    scopus 로고
    • A dynamic subspace method for hyperspectral image classification
    • Jul.
    • J.-M. Yang, B.-C. Kuo, P.-T. Yu, and C.-H. Chuang, "A dynamic subspace method for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2840-2853, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.7 , pp. 2840-2853
    • Yang, J.-M.1    Kuo, B.-C.2    Yu, P.-T.3    Chuang, C.-H.4
  • 53
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • M.Woźniak,M. Graña, and E. Corchado, "A survey of multiple classifier systems as hybrid systems," Inf. Fusion, vol. 16, pp. 3-17, 2014.
    • (2014) Inf. Fusion , vol.16 , pp. 3-17
    • Woźniak, M.1    Graña, M.2    Corchado, E.3
  • 54
    • 0025455577 scopus 로고
    • Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery
    • Jul.
    • D. J. Marceau, P. J. Howarth, J.-M. M. Dubois, and D. J. Gratton, "Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery," IEEE Trans. Geosci. Remote Sens., vol. 28, no. 4, pp. 513-519, Jul. 1990.
    • (1990) IEEE Trans. Geosci. Remote Sens. , vol.28 , Issue.4 , pp. 513-519
    • Marceau, D.J.1    Howarth, P.J.2    Dubois, J.-M.M.3    Gratton, D.J.4
  • 55
    • 48749112669 scopus 로고    scopus 로고
    • Image analysis techniques and graylevel co-occurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures
    • C. E. Honeycutt and R. Plotnick, "Image analysis techniques and graylevel co-occurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures," Comput. Geosci., vol. 34, pp. 1461-1472, 2008.
    • (2008) Comput. Geosci. , vol.34 , pp. 1461-1472
    • Honeycutt, C.E.1    Plotnick, R.2
  • 57
    • 84902327579 scopus 로고    scopus 로고
    • Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning
    • A. Serna and B. Marcotegui, "Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning," ISPRS J. Photogramm. Remote Sens., vol. 93, pp. 243-255, 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.93 , pp. 243-255
    • Serna, A.1    Marcotegui, B.2
  • 58
    • 84891739734 scopus 로고    scopus 로고
    • Hyperspectral image classification using band selection and morphological profiles
    • Jan.
    • K. Tan, E. Li, Q. Du, and P. Du, "Hyperspectral image classification using band selection and morphological profiles," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 1, pp. 40-48, Jan. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.1 , pp. 40-48
    • Tan, K.1    Li, E.2    Du, Q.3    Du, P.4
  • 59
    • 84864770183 scopus 로고    scopus 로고
    • Adaptive change method of remote sensing image fusion
    • L. Wei, Y. Zhong, L. Zhang, and P. Li, "Adaptive change method of remote sensing image fusion," Yaogan Xuebao-J. Remote Sens., vol. 14, pp. 1196-1211, 2010.
    • (2010) Yaogan Xuebao-J. Remote Sens. , vol.14 , pp. 1196-1211
    • Wei, L.1    Zhong, Y.2    Zhang, L.3    Li, P.4
  • 60
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, pp. 489-501, 2006.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 61
    • 84892981560 scopus 로고    scopus 로고
    • Comparative performance of classification algorithms for the development of models of spatial distribution of landscape structures
    • H. Bourennane et al., "Comparative performance of classification algorithms for the development of models of spatial distribution of landscape structures," Geoderma, vol. 219, pp. 136-144, 2014.
    • (2014) Geoderma , vol.219 , pp. 136-144
    • Bourennane, H.1
  • 62
    • 84903309921 scopus 로고    scopus 로고
    • Jointly learning the hybrid CRF andMLR model for simultaneous denoising and classification of hyperspectral imagery
    • Jul.
    • P. Zhong and R.Wang, "Jointly learning the hybrid CRF andMLR model for simultaneous denoising and classification of hyperspectral imagery," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 7, pp. 1319-1334, Jul. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.7 , pp. 1319-1334
    • Zhong, P.1    Wang, R.2
  • 63
    • 84899896987 scopus 로고    scopus 로고
    • E2LMs: Ensemble extreme learning machines for hyperspectral image classification
    • Apr.
    • A. Samat, P. Du, S. Liu, J. Li, and L. Cheng, "E2LMs: Ensemble extreme learning machines for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1060-1069, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1060-1069
    • Samat, A.1    Du, P.2    Liu, S.3    Li, J.4    Cheng, L.5
  • 64
    • 84927959680 scopus 로고    scopus 로고
    • A hybrid method based on extreme learning machine and k-nearest neighbor for cloud classification of ground-based visible cloud image
    • M. Xia, W. Lu, J. Yang, Y. Ma, W. Yao, and Z. Zheng, "A hybrid method based on extreme learning machine and k-nearest neighbor for cloud classification of ground-based visible cloud image," Neurocomputing, vol. 160, pp. 238-249, 2015.
    • (2015) Neurocomputing , vol.160 , pp. 238-249
    • Xia, M.1    Lu, W.2    Yang, J.3    Ma, Y.4    Yao, W.5    Zheng, Z.6
  • 65
    • 84927624381 scopus 로고    scopus 로고
    • A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination
    • K. Tan, J. Hu, J. Li, and P. Du, "A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination," ISPRS J. Photogramm. Remote Sens., vol. 105, pp. 19-29, 2015.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.105 , pp. 19-29
    • Tan, K.1    Hu, J.2    Li, J.3    Du, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.