메뉴 건너뛰기




Volumn 28, Issue 13, 2014, Pages 4747-4763

Estimation of the Change in Lake Water Level by Artificial Intelligence Methods

Author keywords

Adaptive network based fuzzy inference system; Artificial neural networks; Lake Beysehir; Particle swarm optimization; Support vector regression; Water level

Indexed keywords

ERRORS; FUZZY INFERENCE; FUZZY LOGIC; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; LAKES; MEAN SQUARE ERROR; NETWORK LAYERS; NEURAL NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); SUPPORT VECTOR REGRESSION; WATER LEVELS;

EID: 85027939411     PISSN: 09204741     EISSN: 15731650     Source Type: Journal    
DOI: 10.1007/s11269-014-0773-1     Document Type: Article
Times cited : (85)

References (63)
  • 1
    • 85028173020 scopus 로고    scopus 로고
    • Application of Self-Learning Machines in Predicting Great SaltLake Water Level. M.Sc. Dissertation, Utah State University, Logan, Utah
    • Abdel-Hafez MH (2007) Application of Self-Learning Machines in Predicting Great SaltLake Water Level. M.Sc. Dissertation, Utah State University, Logan, Utah, USA.
    • (2007) USA
    • Abdel-Hafez, M.H.1
  • 2
    • 84880039776 scopus 로고    scopus 로고
    • Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS)
    • Afiq H, Ahmed E, Ali N, Othman A, Aini K, Mukhlisi HM (2013) Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS). Water Resour Manag 27:3803–3823
    • (2013) Water Resour Manag , vol.27 , pp. 3803-3823
    • Afiq, H.1    Ahmed, E.2    Ali, N.3    Othman, A.4    Aini, K.5    Mukhlisi, H.M.6
  • 3
    • 33846458992 scopus 로고    scopus 로고
    • Forecasting surface water level fluctuations of Lake Van by artificial neural networks
    • Altunkaynak A (2007) Forecasting surface water level fluctuations of Lake Van by artificial neural networks. Water Resour Manag 21:399–408
    • (2007) Water Resour Manag , vol.21 , pp. 399-408
    • Altunkaynak, A.1
  • 6
    • 33847664581 scopus 로고    scopus 로고
    • Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA
    • Burns DA, Klaus J, McHale MR (2007) Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA. J Hydrol 336:155–170
    • (2007) J Hydrol , vol.336 , pp. 155-170
    • Burns, D.A.1    Klaus, J.2    McHale, M.R.3
  • 7
    • 85016274712 scopus 로고    scopus 로고
    • Water level prediction models based on soft computing techniques (SCTs) for Lake Beysehir, Turkey. Proceedings of the Second International Conference on Water, Energy and the Environment Kusadası
    • Buyukyildiz M, Tezel G, Yilmaz V (2013) Water level prediction models based on soft computing techniques (SCTs) for Lake Beysehir, Turkey. Proceedings of the Second International Conference on Water, Energy and the Environment Kusadası, Turkey September 21–24
    • (2013) Turkey September , pp. 21-24
    • Buyukyildiz, M.1    Tezel, G.2    Yilmaz, V.3
  • 8
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang FJ, Chang YT (2006) Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv Water Resour 29(1):1–10
    • (2006) Adv Water Resour , vol.29 , Issue.1 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 9
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • Chau KW (2006) Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J Hydrol 329(3–4):363–367
    • (2006) J Hydrol , vol.329 , Issue.3-4 , pp. 363-367
    • Chau, K.W.1
  • 10
    • 35349010023 scopus 로고    scopus 로고
    • A split-step particle swarm optimization algorithm in river stage forecasting
    • Chau KW (2007) A split-step particle swarm optimization algorithm in river stage forecasting. J Hydrol 346:131–135
    • (2007) J Hydrol , vol.346 , pp. 131-135
    • Chau, K.W.1
  • 11
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoglu HK (2003) Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydr Sci J 48(3):349–361
    • (2003) Hydr Sci J , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 12
    • 45449119903 scopus 로고    scopus 로고
    • Estimation of daily suspended sediments using support vector machines
    • Cimen M (2008) Estimation of daily suspended sediments using support vector machines. Hydrological Science Journal 53(3):656–666
    • (2008) Hydrological Science Journal , vol.53 , Issue.3 , pp. 656-666
    • Cimen, M.1
  • 13
    • 70350511636 scopus 로고    scopus 로고
    • Comparison of two different data driven techniques in modeling surface water level fluctuations of Lake Van, Turkey
    • Cimen M, Kisi O (2009) Comparison of two different data driven techniques in modeling surface water level fluctuations of Lake Van, Turkey. J Hydrol 378(3–4):253–262
    • (2009) J Hydrol , vol.378 , Issue.3-4 , pp. 253-262
    • Cimen, M.1    Kisi, O.2
  • 14
    • 33749685160 scopus 로고    scopus 로고
    • Suspended sediment load estimation in lower Sakarya river by uing artificial neural networks, fuzzy logic and neuro-fuzzy models
    • Dogan E (2005) Suspended sediment load estimation in lower Sakarya river by uing artificial neural networks, fuzzy logic and neuro-fuzzy models. Elec Lett Sci Eng 1:22–32
    • (2005) Elec Lett Sci Eng , vol.1 , pp. 22-32
    • Dogan, E.1
  • 15
    • 0029517385 scopus 로고
    • A New Optimizer using Particle Swarm Theory”, Proceedings of the Sixth International Symposium on Micro Machine and Human Science (Nagoya, Japan). IEEE Service Center, Piscataway
    • Eberhart R, Kennedy J (1995) A New Optimizer using Particle Swarm Theory”, Proceedings of the Sixth International Symposium on Micro Machine and Human Science (Nagoya, Japan). IEEE Service Center, Piscataway, NJ: 39–43
    • (1995) NJ , pp. 39-43
    • Eberhart, R.1    Kennedy, J.2
  • 16
    • 84920910976 scopus 로고    scopus 로고
    • Elektrik Güç Sistemlerinde Akıllı Sistemler Yardımıyla Arıza Tipi ve Yerinin Belirlenmesi
    • Fırat Üniversitesi, Fen Bilimleri Enstitüsü:
    • Ekici S (2007) Elektrik Güç Sistemlerinde Akıllı Sistemler Yardımıyla Arıza Tipi ve Yerinin Belirlenmesi. PhD Thesis, Fırat Üniversitesi, Fen Bilimleri Enstitüsü (in Turkish)
    • (2007) PhD Thesis
    • Ekici, S.1
  • 18
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
    • El-Shafie A, Taha MR, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resour Manag 21(3):533–556
    • (2007) Water Resour Manag , vol.21 , Issue.3 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 20
    • 77950864370 scopus 로고    scopus 로고
    • Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks
    • Ghorbani MA, Khatibi R, Aytek A, Makarynskyy O, Shiri J (2010) Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks. Comput Geosci 36(5):620–627
    • (2010) Comput Geosci , vol.36 , Issue.5 , pp. 620-627
    • Ghorbani, M.A.1    Khatibi, R.2    Aytek, A.3    Makarynskyy, O.4    Shiri, J.5
  • 21
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall–runoff modeling
    • Giustolisi O, Laucelli D (2005) Improving generalization of artificial neural networks in rainfall–runoff modeling. Hydrological Science Journal 50(3):439–457
    • (2005) Hydrological Science Journal , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 22
    • 78751576467 scopus 로고    scopus 로고
    • Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eğirdir lake level forecasting
    • Guldal V, Tongal H (2010) Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eğirdir lake level forecasting. Water Resour Manag 24(1):105–128
    • (2010) Water Resour Manag , vol.24 , Issue.1 , pp. 105-128
    • Guldal, V.1    Tongal, H.2
  • 23
    • 38349074097 scopus 로고    scopus 로고
    • Trend detection in hydrologic data: the Mann-Kendall trend test under the scaling hypothesis
    • Hamed KH (2008) Trend detection in hydrologic data: the Mann-Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363
    • (2008) J Hydrol , vol.349 , pp. 350-363
    • Hamed, K.H.1
  • 24
    • 0003753097 scopus 로고    scopus 로고
    • Neuro Fuzzy and Soft Computing a Computational Approach to Learning and Machine Intelligence. Prentice Hall
    • Jang JSR, Sun CT, Mizutani E (1997) Neuro Fuzzy and Soft Computing a Computational Approach to Learning and Machine Intelligence. Prentice Hall, USA
    • (1997) USA
    • Jang, J.S.R.1    Sun, C.T.2    Mizutani, E.3
  • 25
    • 84883792756 scopus 로고    scopus 로고
    • Prediction of Urmia Lake water-level fluctuations by using analytical, linear statistic and intelligent methods
    • Kakahaji H, Banadaki HD, Kakahaji A, Kakahaji A (2013) Prediction of Urmia Lake water-level fluctuations by using analytical, linear statistic and intelligent methods. Water Resour Manag 27:4469–4492
    • (2013) Water Resour Manag , vol.27 , pp. 4469-4492
    • Kakahaji, H.1    Banadaki, H.D.2    Kakahaji, A.3    Kakahaji, A.4
  • 26
    • 33746832391 scopus 로고    scopus 로고
    • Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series
    • Keskin ME, Taylan D, Terzi O (2006) Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series. Hydrol Sci J 51(4):588–598
    • (2006) Hydrol Sci J , vol.51 , Issue.4 , pp. 588-598
    • Keskin, M.E.1    Taylan, D.2    Terzi, O.3
  • 27
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan MS, Coulibaly P (2006) Application of support vector machine in lake water level prediction. Hydr Eng 11:199–205
    • (2006) Hydr Eng , vol.11 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 28
    • 79956352538 scopus 로고    scopus 로고
    • Comparison of three artificial intelligence techniques for discharge routing
    • Khatibi R, Ghorbani MA, Kashani MH, Kisi O (2011) Comparison of three artificial intelligence techniques for discharge routing. J Hydrol 403:201–212
    • (2011) J Hydrol , vol.403 , pp. 201-212
    • Khatibi, R.1    Ghorbani, M.A.2    Kashani, M.H.3    Kisi, O.4
  • 29
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using a neuro-fuzzy computing technique
    • Kisi O (2006) Daily pan evaporation modelling using a neuro-fuzzy computing technique. J Hydrol 329(3–4):636–646
    • (2006) J Hydrol , vol.329 , Issue.3-4 , pp. 636-646
    • Kisi, O.1
  • 30
    • 61749102355 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural Networks
    • Kisi O (2009) Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural Networks. Hydrol Process 23:213–223
    • (2009) Hydrol Process , vol.23 , pp. 213-223
    • Kisi, O.1
  • 31
    • 84857912130 scopus 로고    scopus 로고
    • Forecasting daily lake levels using artificial intelligence approaches
    • Kisi O, Shiri J, Nikoofar B (2012) Forecasting daily lake levels using artificial intelligence approaches. Comput Geosci 41:169–180
    • (2012) Comput Geosci , vol.41 , pp. 169-180
    • Kisi, O.1    Shiri, J.2    Nikoofar, B.3
  • 32
    • 3042814331 scopus 로고    scopus 로고
    • Forecasting daily maximum surface ozone concentrations in Brunei Darussalam an ARIMA modeling approach
    • Kumar K, Yadav AK, Singh MP, Hassan H, Jain VK (2004) Forecasting daily maximum surface ozone concentrations in Brunei Darussalam an ARIMA modeling approach. J Air Waste Manag Assoc 84:809–814
    • (2004) J Air Waste Manag Assoc , vol.84 , pp. 809-814
    • Kumar, K.1    Yadav, A.K.2    Singh, M.P.3    Hassan, H.4    Jain, V.K.5
  • 33
    • 43949087486 scopus 로고    scopus 로고
    • Structural optimisation and input selection of an artificial neural network for river level prediction
    • Leahy P, Kiely G, Gearóid C (2008) Structural optimisation and input selection of an artificial neural network for river level prediction. J Hydrol 355:192–201
    • (2008) J Hydrol , vol.355 , pp. 192-201
    • Leahy, P.1    Kiely, G.2    Gearóid, C.3
  • 34
    • 84920918890 scopus 로고    scopus 로고
    • Support vector machines for regression and its application for prediction of machine degradation based on vibration signals. Thesis Master of Science
    • Edmonton, Alberta:
    • Lin H (2006) Support vector machines for regression and its application for prediction of machine degradation based on vibration signals. Thesis Master of Science, University of Alberta, Edmonton, Alberta
    • (2006) University of Alberta
    • Lin, H.1
  • 35
    • 84866149200 scopus 로고    scopus 로고
    • Modeling global solar radiation using particle swarm optimization (PSO)
    • Mohandes MA (2012) Modeling global solar radiation using particle swarm optimization (PSO). Sol Energy 86:3137–3145
    • (2012) Sol Energy , vol.86 , pp. 3137-3145
    • Mohandes, M.A.1
  • 36
    • 33845437201 scopus 로고    scopus 로고
    • Reservoir level forecasting using neural networks: Lake Naivasha
    • Ondimu S, Murase H (2007) Reservoir level forecasting using neural networks: Lake Naivasha. Biosyst Eng 96(1):135–138
    • (2007) Biosyst Eng , vol.96 , Issue.1 , pp. 135-138
    • Ondimu, S.1    Murase, H.2
  • 37
    • 28244500557 scopus 로고    scopus 로고
    • Prediction of the end-depth ratio and discharge in semi-circular and circular shaped channels using support vector machines
    • Pal M, Arun G (2006) Prediction of the end-depth ratio and discharge in semi-circular and circular shaped channels using support vector machines. Flow Meas Instrum 17(1):49–57
    • (2006) Flow Meas Instrum , vol.17 , Issue.1 , pp. 49-57
    • Pal, M.1    Arun, G.2
  • 38
    • 0034319192 scopus 로고    scopus 로고
    • A class-dependent weighted dissimilarity measure for nearest neighbor classification problems
    • Paredes V, Vidal E (2000) A class-dependent weighted dissimilarity measure for nearest neighbor classification problems. Patt Rec Lett 21:1027–1036
    • (2000) Patt Rec Lett , vol.21 , pp. 1027-1036
    • Paredes, V.1    Vidal, E.2
  • 39
    • 78649461313 scopus 로고    scopus 로고
    • Precipitation and temperature trends fort he Southwest China: 1960–2007
    • Qin N, Chen X, Fu G, Zhai J, Xue X (2010) Precipitation and temperature trends fort he Southwest China: 1960–2007. Hydrol Process 24:3733–3744
    • (2010) Hydrol Process , vol.24 , pp. 3733-3744
    • Qin, N.1    Chen, X.2    Fu, G.3    Zhai, J.4    Xue, X.5
  • 40
    • 79960810686 scopus 로고    scopus 로고
    • Hybrid particle swarm and neural network approach for stream flow forecasting
    • Sedki A, Ouazar D (2010) Hybrid particle swarm and neural network approach for stream flow forecasting. Math Model Nat Phenom 5(7):132–138
    • (2010) Math Model Nat Phenom , vol.5 , Issue.7 , pp. 132-138
    • Sedki, A.1    Ouazar, D.2
  • 41
    • 84864371669 scopus 로고    scopus 로고
    • Chamges in diurnal temperature range in Bangladesh during in the time period 1961–2008
    • Shahid S, Harun SB, Katimon A (2012) Chamges in diurnal temperature range in Bangladesh during in the time period 1961–2008. Atmos Res 118:260–270
    • (2012) Atmos Res , vol.118 , pp. 260-270
    • Shahid, S.1    Harun, S.B.2    Katimon, A.3
  • 42
    • 78650177323 scopus 로고    scopus 로고
    • A new trend analysis for seasonal time series with consideration of data dependence
    • Shao Q, Li M (2011) A new trend analysis for seasonal time series with consideration of data dependence. J Hydrol 396:104–112
    • (2011) J Hydrol , vol.396 , pp. 104-112
    • Shao, Q.1    Li, M.2
  • 44
    • 84871721755 scopus 로고    scopus 로고
    • Application of several data-driven techniques for predicting groundwater level
    • Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A (2013) Application of several data-driven techniques for predicting groundwater level. Water Resour Manag 27(2):419–432
    • (2013) Water Resour Manag , vol.27 , Issue.2 , pp. 419-432
    • Shirmohammadi, B.1    Vafakhah, M.2    Moosavi, V.3    Moghaddamnia, A.4
  • 46
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall–runoff modeling
    • Solomatine DP, Dulal KN (2003) Model trees as an alternative to neural networks in rainfall–runoff modeling. Hydrological Science Journal 48(3):399–411
    • (2003) Hydrological Science Journal , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 47
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • Sudheer KP, Gosain AK, Rangan M, Saheb SM (2002) Modelling evaporation using an artificial neural network algorithm. Hydrol Process 16:3189–3202
    • (2002) Hydrol Process , vol.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Rangan, M.3    Saheb, S.M.4
  • 48
    • 79960702239 scopus 로고    scopus 로고
    • Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network
    • Sulaiman M, El-Shafie A, Karim O, Basri H (2011) Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network. Water Resour Manag 25:2525–2541
    • (2011) Water Resour Manag , vol.25 , pp. 2525-2541
    • Sulaiman, M.1    El-Shafie, A.2    Karim, O.3    Basri, H.4
  • 50
    • 78650697073 scopus 로고    scopus 로고
    • Uncertainty analysis for the forecast of lake level fluctuations using ensembles of ANN and ANFIS models
    • Talebizadeh M, Moridnejad A (2011) Uncertainty analysis for the forecast of lake level fluctuations using ensembles of ANN and ANFIS models. Exp Syst with App 38:4126–4135
    • (2011) Exp Syst with App , vol.38 , pp. 4126-4135
    • Talebizadeh, M.1    Moridnejad, A.2
  • 51
    • 84902791443 scopus 로고    scopus 로고
    • Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization
    • Tapogloua E, Trichakisa IC, Dokoua Z, Nikolosb IK, Karatzasa GP (2014) Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization. Hydrol Sci J 59(6):1225–1239
    • (2014) Hydrol Sci J , vol.59 , Issue.6 , pp. 1225-1239
    • Tapogloua, E.1    Trichakisa, I.C.2    Dokoua, Z.3    Nikolosb, I.K.4    Karatzasa, G.P.5
  • 52
    • 84878770211 scopus 로고    scopus 로고
    • Forecasting the level of reservoirs using multiple input fuzzification in ANFIS
    • Valizadeh N, El-Shafie A (2013) Forecasting the level of reservoirs using multiple input fuzzification in ANFIS. Water Resour Manage 27:3319–3331
    • (2013) Water Resour Manage , vol.27 , pp. 3319-3331
    • Valizadeh, N.1    El-Shafie, A.2
  • 53
    • 83055171534 scopus 로고    scopus 로고
    • Daily water level forecasting using adaptive neuro-fuzzy interface system with different scenarios: Klang Gate, Malaysia
    • Valizadeh N, El-Shafie A, Mukhlisin M, El-Shafie AH (2011) Daily water level forecasting using adaptive neuro-fuzzy interface system with different scenarios: Klang Gate, Malaysia. Int J Phys Sci 6(32):7379–7389
    • (2011) Int J Phys Sci , vol.6 , Issue.32 , pp. 7379-7389
    • Valizadeh, N.1    El-Shafie, A.2    Mukhlisin, M.3    El-Shafie, A.H.4
  • 55
    • 0013222083 scopus 로고
    • An Optimized RBF Network For Approximation of Functions, Proceedings European Symposium on Artificial Neural Networks
    • Verleysen M, Hlavackova K (1994) An Optimized RBF Network For Approximation of Functions, Proceedings European Symposium on Artificial Neural Networks. Brussels, Belgium, pp. 175–180
    • (1994) Brussels, Belgium , pp. 175-180
    • Verleysen, M.1    Hlavackova, K.2
  • 56
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • Wu CL, Chau KW, Li YS (2008) River stage prediction based on a distributed support vector regression. J Hydrol 358:96–111
    • (2008) J Hydrol , vol.358 , pp. 96-111
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 57
    • 77954384622 scopus 로고    scopus 로고
    • Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
    • Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J Hydrol 389:146–167
    • (2010) J Hydrol , vol.389 , pp. 146-167
    • Wu, C.L.1    Chau, K.W.2    Fan, C.3
  • 58
    • 84859777732 scopus 로고    scopus 로고
    • Application of PSO-neural network model in prediction of groundwater level in Handan City
    • Xi Z, Zhang Y, Zhu C (2012) Application of PSO-neural network model in prediction of groundwater level in Handan City. Adv in infor Sci and Serv Sci (AISS) 4(6):21
    • (2012) Adv in infor Sci and Serv Sci (AISS) , vol.4 , Issue.6 , pp. 21
    • Xi, Z.1    Zhang, Y.2    Zhu, C.3
  • 59
    • 85028159826 scopus 로고    scopus 로고
    • Epilepsy Diagnosis Using Artificial Neural Network Learned by PSO
    • Computer and Computation, Ankara Turkey:
    • Yalcin N, Tezel G, Karakuzu C (2012) Epilepsy Diagnosis Using Artificial Neural Network Learned by PSO. 9th International Conference on Electronics, Computer and Computation, Ankara Turkey
    • (2012) 9th International Conference on Electronics
    • Yalcin, N.1    Tezel, G.2    Karakuzu, C.3
  • 61
    • 58849094959 scopus 로고    scopus 로고
    • Modelling level change in lakes using neuro-fuzzy and artificial neural networks
    • Yarar A, Onucyildiz M, Copty NK (2009) Modelling level change in lakes using neuro-fuzzy and artificial neural networks. J Hydrol 365:329–334
    • (2009) J Hydrol , vol.365 , pp. 329-334
    • Yarar, A.1    Onucyildiz, M.2    Copty, N.K.3
  • 63
    • 37249083060 scopus 로고    scopus 로고
    • Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    • Zounemat-Kermani M, Teshnehlab M (2008) Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl Soft Comput 8(2):928–936
    • (2008) Appl Soft Comput , vol.8 , Issue.2 , pp. 928-936
    • Zounemat-Kermani, M.1    Teshnehlab, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.