메뉴 건너뛰기




Volumn 41, Issue , 2012, Pages 169-180

Forecasting daily lake levels using artificial intelligence approaches

Author keywords

Forecast; Genetic programming; Lake level; Neural networks; Neuro fuzzy

Indexed keywords

ACCURATE PREDICTION; ADAPTIVE NEUROFUZZY INFERENCE SYSTEM; AHEAD-TIME; ARMA MODEL; AUTOREGRESSIVE MOVING AVERAGE MODEL; FORECAST; FRESH WATER LAKES; GENE EXPRESSION PROGRAMMING; LAKE LEVEL; LAKE LEVELS; LAKESHORE STRUCTURE; NEURO-FUZZY;

EID: 84857912130     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2011.08.027     Document Type: Article
Times cited : (157)

References (54)
  • 1
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: hydrological applications
    • American Society of Civil Engineers (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology
    • American Society of Civil Engineers (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology Artificial neural networks in hydrology. II: hydrological applications. Journal of Hydrologic Engineering 2000, 5(2):124-137.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
  • 2
    • 39849091610 scopus 로고    scopus 로고
    • A genetic programming approach to suspended sediment modeling
    • Aytek A., Kisi O. A genetic programming approach to suspended sediment modeling. Journal of Hydrology 2008, 351:288-298.
    • (2008) Journal of Hydrology , vol.351 , pp. 288-298
    • Aytek, A.1    Kisi, O.2
  • 4
    • 33846847847 scopus 로고    scopus 로고
    • Monthly dam inflow forecasts using weather forecast information and neuro-fuzzy technique
    • Bae D.H., Jeong D.M., Kim G. Monthly dam inflow forecasts using weather forecast information and neuro-fuzzy technique. Hydrological Sciences Journal 2007, 52(1):99-113.
    • (2007) Hydrological Sciences Journal , vol.52 , Issue.1 , pp. 99-113
    • Bae, D.H.1    Jeong, D.M.2    Kim, G.3
  • 6
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang F.J., Chang Y.T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources 2009, 29:1-10.
    • (2009) Advances in Water Resources , vol.29 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 7
    • 0035340711 scopus 로고    scopus 로고
    • Counter propagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang F.J., Chen Y.C. Counter propagation fuzzy-neural network modeling approach to real time streamflow prediction. Journal of Hydrology 2001, 245:153-164.
    • (2001) Journal of Hydrology , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 8
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoglu H.K. Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrological Sciences Journal 2003, 48(3):349-361.
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 9
    • 70350511636 scopus 로고    scopus 로고
    • Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey
    • Cimen M., Kisi O. Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey. Journal of Hydrology 2009, 378:253-262.
    • (2009) Journal of Hydrology , vol.378 , pp. 253-262
    • Cimen, M.1    Kisi, O.2
  • 10
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson W.C., Wilby R. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal 1998, 43(1):47-66.
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 11
    • 0344286516 scopus 로고    scopus 로고
    • Real-time forecasting using neural networks
    • Deo M.C., Naidu S. Real-time forecasting using neural networks. Ocean Engineering 1999, 26(3):191-203.
    • (1999) Ocean Engineering , vol.26 , Issue.3 , pp. 191-203
    • Deo, M.C.1    Naidu, S.2
  • 13
    • 84857919344 scopus 로고    scopus 로고
    • Gene expression programming in problem solving. In: 6th Online World Conference on Soft Computing in Industrial Applications (invited tutorial).
    • Ferreira, C., 2001a. Gene expression programming in problem solving. In: 6th Online World Conference on Soft Computing in Industrial Applications (invited tutorial).
    • (2001)
    • Ferreira, C.1
  • 14
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: a new adaptive algorithm for solving problems
    • Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 2001, 13(2):87-129.
    • (2001) Complex Systems , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 16
    • 46749107461 scopus 로고    scopus 로고
    • Real-time wave forecasting using genetic programming
    • Gaur S., Deo M.C. Real-time wave forecasting using genetic programming. Ocean Engineering 2008, 35(11-12):1166-1172.
    • (2008) Ocean Engineering , vol.35 , Issue.11-12 , pp. 1166-1172
    • Gaur, S.1    Deo, M.C.2
  • 17
    • 77950864370 scopus 로고    scopus 로고
    • Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks
    • Ghorbani M.A., Khatibi R., Aytek A., Makarynskyy O., Shiri J. Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks. Computers & Geosciences 2010, 36:620-627.
    • (2010) Computers & Geosciences , vol.36 , pp. 620-627
    • Ghorbani, M.A.1    Khatibi, R.2    Aytek, A.3    Makarynskyy, O.4    Shiri, J.5
  • 19
    • 41749119185 scopus 로고    scopus 로고
    • Genetic programming approach for prediction of local scour downstream hydraulic structures
    • Guven A., Gunal M. Genetic programming approach for prediction of local scour downstream hydraulic structures. Journal of Irrigation and Drainage Engineering 2008, 134(2):241-249.
    • (2008) Journal of Irrigation and Drainage Engineering , vol.134 , Issue.2 , pp. 241-249
    • Guven, A.1    Gunal, M.2
  • 20
    • 85009570458 scopus 로고    scopus 로고
    • Velocity predictions in compound channels with vegetated flood plains using genetic programming
    • Harris E.L., Babovic V., Falconer R.A. Velocity predictions in compound channels with vegetated flood plains using genetic programming. International Journal of River Basin Management 2003, 1(2):117-123.
    • (2003) International Journal of River Basin Management , vol.1 , Issue.2 , pp. 117-123
    • Harris, E.L.1    Babovic, V.2    Falconer, R.A.3
  • 21
    • 0004063090 scopus 로고    scopus 로고
    • A Comprehensive Foundation, Prentice-Hall, Upper Saddle River, New Jersey
    • Haykin S. Neural Networks 1999, A Comprehensive Foundation, Prentice-Hall, Upper Saddle River, New Jersey, 842 pp.
    • (1999) Neural Networks , pp. 842
    • Haykin, S.1
  • 22
    • 57349188393 scopus 로고    scopus 로고
    • Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm
    • Hong Y.S.T., White P.A. Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm. Advances in Water Resources 2009, 32:110-119.
    • (2009) Advances in Water Resources , vol.32 , pp. 110-119
    • Hong, Y.S.T.1    White, P.A.2
  • 26
    • 79955551242 scopus 로고    scopus 로고
    • Progress accuracy of CPO price prediction: Evidence from ARMA family and artificial neural network approach
    • Karia A.A., Bujang I. Progress accuracy of CPO price prediction: Evidence from ARMA family and artificial neural network approach. International Research Journal of Finance and Economics 2011, 64:66-79.
    • (2011) International Research Journal of Finance and Economics , vol.64 , pp. 66-79
    • Karia, A.A.1    Bujang, I.2
  • 27
    • 22144443524 scopus 로고    scopus 로고
    • Application of fuzzy inference system in the prediction of wave parameters
    • Kazeminezhad M.H., Etemad-shahidi A., Mousavi S.J. Application of fuzzy inference system in the prediction of wave parameters. Ocean Engineering 2005, 32:1709-1725.
    • (2005) Ocean Engineering , vol.32 , pp. 1709-1725
    • Kazeminezhad, M.H.1    Etemad-shahidi, A.2    Mousavi, S.J.3
  • 28
    • 10244243705 scopus 로고    scopus 로고
    • Fuzzy logic model approaches to daily pan evaporation estimation in Western Turkey
    • Keskin M.E., Terzi O., Taylan D. Fuzzy logic model approaches to daily pan evaporation estimation in Western Turkey. Hydrological Sciences Journal 2004, 49(6):1001-1010.
    • (2004) Hydrological Sciences Journal , vol.49 , Issue.6 , pp. 1001-1010
    • Keskin, M.E.1    Terzi, O.2    Taylan, D.3
  • 29
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi O. River flow modeling using artificial neural networks. Journal of Hydrologic Engineering 2004, 9(1):60-63.
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 30
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptions with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation
    • Kisi O. Multi-layer perceptions with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrological Sciences Journal 2004, 49(6):1025-1040.
    • (2004) Hydrological Sciences Journal , vol.49 , Issue.6 , pp. 1025-1040
    • Kisi, O.1
  • 31
    • 33845321370 scopus 로고    scopus 로고
    • Generalized regression neural networks for evapotranspiration modeling
    • Kisi O. Generalized regression neural networks for evapotranspiration modeling. Hydrological Sciences Journal 2006, 51(6):1092-1105.
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.6 , pp. 1092-1105
    • Kisi, O.1
  • 32
    • 33746879196 scopus 로고    scopus 로고
    • Evapotranspiration estimation using feed forward neural networks
    • Kisi O. Evapotranspiration estimation using feed forward neural networks. Nordic Hydrology 2006, 37(3):247-260.
    • (2006) Nordic Hydrology , vol.37 , Issue.3 , pp. 247-260
    • Kisi, O.1
  • 33
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modeling using a neuro-fuzzy computing technique
    • Kisi O. Daily pan evaporation modeling using a neuro-fuzzy computing technique. Journal of Hydrology 2006, 329:636-646.
    • (2006) Journal of Hydrology , vol.329 , pp. 636-646
    • Kisi, O.1
  • 34
    • 34547116654 scopus 로고    scopus 로고
    • Adaptive neurofuzzy computing technique for evapotranspiration estimation
    • Kisi O., Ozturk O. Adaptive neurofuzzy computing technique for evapotranspiration estimation. Journal of Irrigation and Drainage Engineering 2007, 133(4):368-379.
    • (2007) Journal of Irrigation and Drainage Engineering , vol.133 , Issue.4 , pp. 368-379
    • Kisi, O.1    Ozturk, O.2
  • 35
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent stream flow forecasting
    • Kisi O. Neural networks and wavelet conjunction model for intermittent stream flow forecasting. Journal of Hydrologic Engineering 2009, 14(8):773-782.
    • (2009) Journal of Hydrologic Engineering , vol.14 , Issue.8 , pp. 773-782
    • Kisi, O.1
  • 37
    • 46749151701 scopus 로고    scopus 로고
    • Soft computing approach for real-time estimation of missing wave heights
    • Londhe S.N. Soft computing approach for real-time estimation of missing wave heights. Ocean Engineering 2008, 35:1080-1089.
    • (2008) Ocean Engineering , vol.35 , pp. 1080-1089
    • Londhe, S.N.1
  • 38
    • 52049110988 scopus 로고    scopus 로고
    • Predicting sea-level variations at the Cocos (Keeling) Island with artificial neural networks
    • Makarynska D., Makarynskyy O. Predicting sea-level variations at the Cocos (Keeling) Island with artificial neural networks. Computers & Geosciences 2008, 34:1910-1917.
    • (2008) Computers & Geosciences , vol.34 , pp. 1910-1917
    • Makarynska, D.1    Makarynskyy, O.2
  • 39
    • 4544314347 scopus 로고    scopus 로고
    • Predicting sea level variations with artificial neural networks at Hillarys Harbour, Western Australia
    • Makarynskyy O., Makarynska D., Kuhn M., Featherstone W.E. Predicting sea level variations with artificial neural networks at Hillarys Harbour, Western Australia. Estuarine, Coastal and Shelf Sciences 2004, 61(2):351-360.
    • (2004) Estuarine, Coastal and Shelf Sciences , vol.61 , Issue.2 , pp. 351-360
    • Makarynskyy, O.1    Makarynska, D.2    Kuhn, M.3    Featherstone, W.E.4
  • 41
    • 0037224608 scopus 로고    scopus 로고
    • Forecasting wind with neural networks
    • More A., Deo M.C. Forecasting wind with neural networks. Marine Structures 2003, 16(1):35-49.
    • (2003) Marine Structures , vol.16 , Issue.1 , pp. 35-49
    • More, A.1    Deo, M.C.2
  • 42
    • 67650293317 scopus 로고    scopus 로고
    • Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed
    • Mutlu E., Chaubey I., Hexmoor H., Bajwa S.G. Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrological Processes 2008, 22(26):5097-5106.
    • (2008) Hydrological Processes , vol.22 , Issue.26 , pp. 5097-5106
    • Mutlu, E.1    Chaubey, I.2    Hexmoor, H.3    Bajwa, S.G.4
  • 43
    • 33845437201 scopus 로고    scopus 로고
    • Reservoir level forecasting using neural networks: Lake Naivasha
    • Ondimu S., Murase H. Reservoir level forecasting using neural networks: Lake Naivasha. Biosystems Engineering 2007, 96(1):135-138.
    • (2007) Biosystems Engineering , vol.96 , Issue.1 , pp. 135-138
    • Ondimu, S.1    Murase, H.2
  • 44
    • 57949098440 scopus 로고    scopus 로고
    • Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing technique
    • Ozger M., Yildirim G. Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing technique. Advances in Engineering Software 2009, 40:281-287.
    • (2009) Advances in Engineering Software , vol.40 , pp. 281-287
    • Ozger, M.1    Yildirim, G.2
  • 45
    • 84857924369 scopus 로고    scopus 로고
    • Covariant parsimony pressure for genetic programming. Technical Report CES-480.
    • Ploi, R., McPhee, N.F. 2008. Covariant parsimony pressure for genetic programming. Technical Report CES-480.
    • (2008)
    • Ploi, R.1    McPhee, N.F.2
  • 48
    • 16444379492 scopus 로고    scopus 로고
    • Comparison of adaptive network based fuzzy inference systems and B-spline neuro-fuzzy mode choice models
    • Sayed T., Tavakolie A., Razavi A. Comparison of adaptive network based fuzzy inference systems and B-spline neuro-fuzzy mode choice models. Journal of Computing in Civil Engineering-ASCE 2003, 17(2):123-130.
    • (2003) Journal of Computing in Civil Engineering-ASCE , vol.17 , Issue.2 , pp. 123-130
    • Sayed, T.1    Tavakolie, A.2    Razavi, A.3
  • 49
    • 80052542665 scopus 로고    scopus 로고
    • Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations
    • Shiri J., Kisi O. Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Computers & Geosciences 2011, 10.1016/j.cageo. 2010.11.010.
    • (2011) Computers & Geosciences
    • Shiri, J.1    Kisi, O.2
  • 51
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on System, Man and Cybernetics 1985, 15(1):116-132.
    • (1985) IEEE Transactions on System, Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 52
    • 42149162803 scopus 로고    scopus 로고
    • Filling up gaps in wave data with genetic programming
    • Ustoorikar K., Deo M.C. Filling up gaps in wave data with genetic programming. Marine Structures 2008, 21:177-195.
    • (2008) Marine Structures , vol.21 , pp. 177-195
    • Ustoorikar, K.1    Deo, M.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.