메뉴 건너뛰기




Volumn 27, Issue 9, 2013, Pages 3319-3331

Forecasting the Level of Reservoirs Using Multiple Input Fuzzification in ANFIS

Author keywords

Klang Dam; Level estimation; MFs; Neuro fuzzy

Indexed keywords

ADAPTIVE NEURO-FUZZY; ANFIS ARCHITECTURE; ERROR PERFORMANCE; HYDROLOGICAL ESTIMATION; INTERFACE SYSTEM; MFS; NEURO-FUZZY; RESERVOIR OPERATION;

EID: 84878770211     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-013-0349-5     Document Type: Article
Times cited : (37)

References (25)
  • 1
    • 77950864370 scopus 로고    scopus 로고
    • Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks
    • Ali Ghorbani M, Khatibi R, Aytek A, Makarynskyy O, Shiri J (2010) Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks. Comput Geosci 36(5): 620-627.
    • (2010) Comput Geosci , vol.36 , Issue.5 , pp. 620-627
    • Ali, G.M.1    Khatibi, R.2    Aytek, A.3    Makarynskyy, O.4    Shiri, J.5
  • 2
    • 0035973156 scopus 로고    scopus 로고
    • Intelligent control for modelling of real-time reservoir operation
    • Chang LC, Chang FJ (2001) Intelligent control for modelling of real-time reservoir operation. Hydrol Process 15(9): 1621-1634.
    • (2001) Hydrol Process , vol.15 , Issue.9 , pp. 1621-1634
    • Chang, L.C.1    Chang, F.J.2
  • 3
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang F-J, Chang Y-T (2006) Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv Water Resour 29(1): 1-10.
    • (2006) Adv Water Resour , vol.29 , Issue.1 , pp. 1-10
    • Chang, F.-J.1    Chang, Y.-T.2
  • 4
    • 33847261136 scopus 로고    scopus 로고
    • Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks
    • Chaves P, Kojiri T (2007) Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks. Adv Water Resour 30(5): 1329-1341.
    • (2007) Adv Water Resour , vol.30 , Issue.5 , pp. 1329-1341
    • Chaves, P.1    Kojiri, T.2
  • 5
    • 79551476028 scopus 로고    scopus 로고
    • Evapotranspiration estimation by two different neuro-fuzzy inference systems
    • Cobaner M (2011) Evapotranspiration estimation by two different neuro-fuzzy inference systems. J Hydrol 398(3-4): 292-302.
    • (2011) J Hydrol , vol.398 , Issue.3-4 , pp. 292-302
    • Cobaner, M.1
  • 6
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
    • El-Shafie A, Taha MR et al (2007) A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resour Manag 21(3): 533-556.
    • (2007) Water Resour Manag , vol.21 , Issue.3 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2
  • 7
    • 79960851974 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia
    • El-Shafie A, Jaafer O, Seyed A (2011) Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia. Int J Phys Sci 6(12): 2875-2888.
    • (2011) Int J Phys Sci , vol.6 , Issue.12 , pp. 2875-2888
    • El-Shafie, A.1    Jaafer, O.2    Seyed, A.3
  • 8
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. Syst Man Cybern IEEE Trans 23(3): 665-685.
    • (1993) Syst Man Cybern IEEE Trans , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 9
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang J-SR, Sun C-T (1995) Neuro-fuzzy modeling and control. Proc IEEE 83(3): 378-406.
    • (1995) Proc IEEE , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.-S.R.1    Sun, C.-T.2
  • 10
    • 84868210863 scopus 로고    scopus 로고
    • Monthly precipitation forecasting with a neuro-fuzzy model
    • Jeong C, Shin J-Y et al (2012) Monthly precipitation forecasting with a neuro-fuzzy model. Water Resour Manag 26(15): 4467-4483.
    • (2012) Water Resour Manag , vol.26 , Issue.15 , pp. 4467-4483
    • Jeong, C.1    Shin, J.-Y.2
  • 12
    • 79956352538 scopus 로고    scopus 로고
    • Comparison of three artificial intelligence techniques for discharge routing
    • Khatibi R, Ghorbani MA, Kashani MH, Kisi O (2011) Comparison of three artificial intelligence techniques for discharge routing. J Hydrol 403(3-4): 201-212.
    • (2011) J Hydrol , vol.403 , Issue.3-4 , pp. 201-212
    • Khatibi, R.1    Ghorbani, M.A.2    Kashani, M.H.3    Kisi, O.4
  • 13
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using a neuro-fuzzy computing technique
    • Kişi Ö (2006) Daily pan evaporation modelling using a neuro-fuzzy computing technique. J Hydrol 329(3-4): 636-646.
    • (2006) J Hydrol , vol.329 , Issue.3-4 , pp. 636-646
    • Kişi, Ö.1
  • 14
    • 84855232291 scopus 로고    scopus 로고
    • Intermittent streamflow forecasting by using several data driven techniques
    • Kisi O, Nia AM et al (2012) Intermittent streamflow forecasting by using several data driven techniques. Water Resour Manag 26(2): 457-474.
    • (2012) Water Resour Manag , vol.26 , Issue.2 , pp. 457-474
    • Kisi, O.1    Nia, A.M.2
  • 15
    • 33645130069 scopus 로고    scopus 로고
    • A hybrid neural-genetic algorithm for reservoir water quality management
    • Kuo J-T, Wang Y-Y, Lung W-S (2006) A hybrid neural-genetic algorithm for reservoir water quality management. Water Res 40(7): 1367-1376.
    • (2006) Water Res , vol.40 , Issue.7 , pp. 1367-1376
    • Kuo, J.-T.1    Wang, Y.-Y.2    Lung, W.-S.3
  • 16
    • 84875682492 scopus 로고    scopus 로고
    • Neural network-particle swarm modeling to predict thermal properties
    • Lazzús, JA (2013) Neural network-particle swarm modeling to predict thermal properties. Math Comput Model.
    • (2013) Math Comput Model
    • Lazzús, J.A.1
  • 17
    • 84868209993 scopus 로고    scopus 로고
    • Estimation of daily pan evaporation using two different adaptive neuro-fuzzy computing techniques
    • Sanikhani H, Kisi O et al (2012) Estimation of daily pan evaporation using two different adaptive neuro-fuzzy computing techniques. Water Resour Manag 26(15): 4347-4365.
    • (2012) Water Resour Manag , vol.26 , Issue.15 , pp. 4347-4365
    • Sanikhani, H.1    Kisi, O.2
  • 18
    • 0035701248 scopus 로고    scopus 로고
    • A non-linear neural network technique for updating of river flow forecasts
    • Shamseldin AY, O'Connor KM (2001) A non-linear neural network technique for updating of river flow forecasts. Hydrol Earth Syst Sci 5(4): 577-598.
    • (2001) Hydrol Earth Syst Sci , vol.5 , Issue.4 , pp. 577-598
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 19
    • 84871721755 scopus 로고    scopus 로고
    • Application of several data-driven techniques for predicting groundwater level
    • Shirmohammadi B, Vafakhah M et al (2013) Application of several data-driven techniques for predicting groundwater level. Water Resour Manag 27(2): 419-432.
    • (2013) Water Resour Manag , vol.27 , Issue.2 , pp. 419-432
    • Shirmohammadi, B.1    Vafakhah, M.2
  • 20
    • 0021892282 scopus 로고
    • Fuzzy identification of system and its applications to modelling and control
    • Takagi T, Sugeno M (1985) Fuzzy identification of system and its applications to modelling and control. IEEE Trans Syst Man Cybern 15(1): 116-132.
    • (1985) IEEE Trans Syst Man Cybern , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 21
    • 77956263390 scopus 로고    scopus 로고
    • Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling
    • Talei A, Chua LHC, Wong TSW (2010) Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling. J Hydrol 391(3-4): 248-262.
    • (2010) J Hydrol , vol.391 , Issue.3-4 , pp. 248-262
    • Talei, A.1    Chua, L.H.C.2    Wong, T.S.W.3
  • 22
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar AS, Markus M (2000) Precipitation-runoff modeling using artificial neural networks and conceptual models. J Hydrol Eng 5(2): 156-161.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 23
    • 83055171534 scopus 로고    scopus 로고
    • Daily water level forecasting using adaptive neuro-fuzzy interface system with different scenarios: Klang Gate, Malaysia
    • Valizadeh N, El-Shafie A, Mukhlisin M, El-Shafie A (2011) Daily water level forecasting using adaptive neuro-fuzzy interface system with different scenarios: Klang Gate, Malaysia. Int J Phys Sci 6(32): 7379-7389.
    • (2011) Int J Phys Sci , vol.6 , Issue.32 , pp. 7379-7389
    • Valizadeh, N.1    El-Shafie, A.2    Mukhlisin, M.3    El-Shafie, A.4
  • 24
    • 72249118415 scopus 로고    scopus 로고
    • A new library to combine artificial neural networks and support vector machines with statistics and a database engine for application in environmental modeling
    • Wieland R, Mirschel W, Zbell B, Groth K, Pechenick A, Fukuda K (2010) A new library to combine artificial neural networks and support vector machines with statistics and a database engine for application in environmental modeling. Environ Model Softw 25(4): 412-420.
    • (2010) Environ Model Softw , vol.25 , Issue.4 , pp. 412-420
    • Wieland, R.1    Mirschel, W.2    Zbell, B.3    Groth, K.4    Pechenick, A.5    Fukuda, K.6
  • 25
    • 78649912654 scopus 로고    scopus 로고
    • Adaptive neuro fuzzy inference system for classification of water quality status
    • Yan H, Zou Z, Wang H (2010) Adaptive neuro fuzzy inference system for classification of water quality status. J Environ Sci 22(12): 1891-1896.
    • (2010) J Environ Sci , vol.22 , Issue.12 , pp. 1891-1896
    • Yan, H.1    Zou, Z.2    Wang, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.