메뉴 건너뛰기




Volumn 6, Issue 32, 2011, Pages 7379-7389

Daily water level forecasting using adaptive neuro-fuzzy interface system with different scenarios: Klang Gate, Malaysia

Author keywords

Adaptive neuro fuzzy interface system (ANFIS); Forecasting model; Klang Gate

Indexed keywords


EID: 83055171534     PISSN: 19921950     EISSN: None     Source Type: Journal    
DOI: 10.5897/IJPS11.1314     Document Type: Article
Times cited : (13)

References (43)
  • 1
    • 77950864370 scopus 로고    scopus 로고
    • Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks
    • Ali GM, Khatibi R, Aytek A, Makarynskyy O, Shiri J (2010). Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks. Computers & Geosciences, 36(5): 620-627.
    • (2010) Computers & Geosciences , vol.36 , Issue.5 , pp. 620-627
    • Ali, G.M.1    Khatibi, R.2    Aytek, A.3    Makarynskyy, O.4    Shiri, J.5
  • 3
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang FJ, Chang YT (2006). Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances Water Res., 29(1): 1-10.
    • (2006) Advances Water Res. , vol.29 , Issue.1 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 4
    • 0035973156 scopus 로고    scopus 로고
    • Intelligent control for modelling of real time reservoir operation
    • Chang LC, Chang FJ (2001). Intelligent control for modelling of real time reservoir operation. Hydrological processes 15(9): 1621-1634.
    • (2001) Hydrological processes , vol.15 , Issue.9 , pp. 1621-1634
    • Chang, L.C.1    Chang, F.J.2
  • 5
    • 78751542590 scopus 로고    scopus 로고
    • Application of support vector regression to predict metallogenic favourability degree
    • Chunming W, Lv X, Lv X, Cao X, Mo Y, Chen C (2010). Application of support vector regression to predict metallogenic favourability degree. Int. J. Phys. Sci., 5(16): 2523-2527.
    • (2010) Int. J. Phys. Sci. , vol.5 , Issue.16 , pp. 2523-2527
    • Chunming, W.1    Lv, X.2    Lv, X.3    Cao, X.4    Mo, Y.5    Chen, C.6
  • 6
    • 79957945389 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to Alexandria, Egypt
    • El-Shafie AH, El-Shafie A, El Mazoghi HG, Shehata A, Taha MR (2011). Artificial neural network technique for rainfall forecasting applied to Alexandria, Egypt. Int. J. Phys. Sci., 6(6):1306-1316.
    • (2011) Int. J. Phys. Sci. , vol.6 , Issue.6 , pp. 1306-1316
    • El-Shafie, A.H.1    El-Shafie, A.2    El Mazoghi, H.G.3    Shehata, A.4    Taha, M.R.5
  • 7
    • 0034174280 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology
    • Govindaraju RS (2000). Artificial Neural Networks in Hydrology. J. Hydrologic Eng., 5(2).
    • (2000) J. Hydrologic Eng. , vol.5 , Issue.2
    • Govindaraju, R.S.1
  • 8
    • 0036579528 scopus 로고    scopus 로고
    • Reservoir operation using the neural network and fuzzy systems for dam control and operation support
    • Hasebe M, Nagayama Y (2002). Reservoir operation using the neural network and fuzzy systems for dam control and operation support. Advances Eng. Software, 33(5): 245-260.
    • (2002) Advances Eng. Software , vol.33 , Issue.5 , pp. 245-260
    • Hasebe, M.1    Nagayama, Y.2
  • 9
    • 33646162414 scopus 로고    scopus 로고
    • An application of artificial neural networks to carbon, nitrogen and phosphorus concentrations in three boreal streams and impacts of climate change
    • Holmberg M, Forsius M, Starr M, Huttunen M (2006). An application of artificial neural networks to carbon, nitrogen and phosphorus concentrations in three boreal streams and impacts of climate change. Ecological Model., 195(1-2): 51-60.
    • (2006) Ecological Model. , vol.195 , Issue.1-2 , pp. 51-60
    • Holmberg, M.1    Forsius, M.2    Starr, M.3    Huttunen, M.4
  • 10
    • 57349188393 scopus 로고    scopus 로고
    • Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm
    • Hong YST, White PA (2009). Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm. Advances in Water Resour., 32(1): 110-119.
    • (2009) Advances in Water Resour. , vol.32 , Issue.1 , pp. 110-119
    • Hong, Y.S.T.1    White, P.A.2
  • 11
    • 79953719959 scopus 로고    scopus 로고
    • Evolving neural network using real coded genetic algorithm for permeability estimation of the reservoir
    • Irani R, Nasimi R (2011). Evolving neural network using real coded genetic algorithm for permeability estimation of the reservoir. Expert Systems Appl., 38(8): 9862-9866.
    • (2011) Expert Systems Appl. , vol.38 , Issue.8 , pp. 9862-9866
    • Irani, R.1    Nasimi, R.2
  • 12
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang JSR (1993). ANFIS: Adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics, IEEE Trans., 23(3): 665-685.
    • (1993) Systems, Man and Cybernetics, IEEE Trans. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 13
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang JSR, Sun CT (1995). Neuro-fuzzy modeling and control. Proceedings IEEE, 83(3): 378-406.
    • (1995) Proceedings IEEE , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 15
    • 79151471046 scopus 로고    scopus 로고
    • Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange
    • Kara Y, Acar BM, Baykan ÖK (2011). Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert Syst. Appl., 38(5): 5311-5319.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.5 , pp. 5311-5319
    • Kara, Y.1    Acar, B.M.2    Baykan, O.K.3
  • 17
    • 71549124961 scopus 로고    scopus 로고
    • Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network
    • Khajeh A, Modarress H (2010). Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network. Expert Syst. Appl., 37(4): 3070-3074.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.4 , pp. 3070-3074
    • Khajeh, A.1    Modarress, H.2
  • 18
    • 79956352538 scopus 로고    scopus 로고
    • Comparison of three artificial intelligence techniques for discharge routing
    • Khatibi R, Ghorbani MA, Kashani MH, Kisi O (2011). Comparison of three artificial intelligence techniques for discharge routing. J. Hydrol., 403(3-4): 201-212.
    • (2011) J. Hydrol. , vol.403 , Issue.3-4 , pp. 201-212
    • Khatibi, R.1    Ghorbani, M.A.2    Kashani, M.H.3    Kisi, O.4
  • 19
    • 33746901239 scopus 로고    scopus 로고
    • The use of artificial neural networks in decision support in cancer: A systematic review
    • Lisboa PJ, Taktak AFG (2006). The use of artificial neural networks in decision support in cancer: A systematic review. Neural Networks, 19(4): 408-415.
    • (2006) Neural Networks , vol.19 , Issue.4 , pp. 408-415
    • Lisboa, P.J.1    Taktak, A.F.G.2
  • 23
    • 32544433749 scopus 로고    scopus 로고
    • Forecasting output using oil prices: A cascaded artificial neural network approach
    • Malik F, Nasereddin M (2006). Forecasting output using oil prices: A cascaded artificial neural network approach. J. Econ. Bus., 58(2): 168-180.
    • (2006) J. Econ. Bus. , vol.58 , Issue.2 , pp. 168-180
    • Malik, F.1    Nasereddin, M.2
  • 25
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch WS, Pitts W (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin Math. Biol., 5(4): 115-133.
    • (1943) Bulletin Math. Biol. , vol.5 , Issue.4 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 26
    • 84984455292 scopus 로고
    • Familiarity, application, and performance of sales forecasting techniques
    • Mentzer JT, Cox J, James E (1984). Familiarity, application, and performance of sales forecasting techniques. J. Forecasting, 3(1): 27-36.
    • (1984) J. Forecasting , vol.3 , Issue.1 , pp. 27-36
    • Mentzer, J.T.1    Cox, J.2    James, E.3
  • 27
    • 0035673819 scopus 로고    scopus 로고
    • Advances in neural network modeling of phytoplankton primary production
    • Michele S (2001). Advances in neural network modeling of phytoplankton primary production. Ecol. Model., 146(1-3): 33-45.
    • (2001) Ecol. Model. , vol.146 , Issue.1-3 , pp. 33-45
    • Michele, S.1
  • 28
    • 79551476028 scopus 로고    scopus 로고
    • Evapotranspiration estimation by two different neuro-fuzzy inference systems
    • Murat C (2011). Evapotranspiration estimation by two different neuro-fuzzy inference systems. J. Hydrol., 398(3-4): 292-302.
    • (2011) J. Hydrol. , vol.398 , Issue.3-4 , pp. 292-302
    • Murat, C.1
  • 29
    • 80054860156 scopus 로고    scopus 로고
    • An application of different artificial intelligences techniques for water quality prediction
    • Najah A, El-Shafie A, Karim OA, Jaafar O, El-Shafie aAH (2011). An application of different artificial intelligences techniques for water quality prediction. Int. J. Phys., Sci., 6(22).
    • (2011) Int. J. Phys., Sci. , vol.6 , Issue.22
    • Najah, A.1    El-Shafie, A.2    Karim, O.A.3    Jaafar, O.4    El-Shafie, A.H.5
  • 30
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak, PC, Sudheer KP, Rangan DM, Ramasastri KS (2004). A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol., 291(1-2): 52-66.
    • (2004) J. Hydrol. , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 35
    • 0021892282 scopus 로고
    • Fuzzy Identification of systems and its applications to modeling and control
    • Takagi T, Sugeno M (1985). Fuzzy Identification of systems and its applications to modeling and control. IEEE transactions on systems, 15(1): 116-132.
    • (1985) IEEE transactions on systems , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 36
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar AS, Markus M (2000). Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng., 5(2): 156-161.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 38
    • 33644891019 scopus 로고    scopus 로고
    • Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system
    • Tutmez B, Hatipoglu Z, Kaymak U (2006). Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system. Comput. Geosci., 32(4): 421-433.
    • (2006) Comput. Geosci. , vol.32 , Issue.4 , pp. 421-433
    • Tutmez, B.1    Hatipoglu, Z.2    Kaymak, U.3
  • 39
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang WC, Chau KW, Cheng CT, Qiu L (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol., 374(3-4): 294-306.
    • (2009) J. Hydrol. , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 40
    • 84857781102 scopus 로고    scopus 로고
    • An expanded Adaptive Neuro-Fuzzy Inference System (ANFIS) model based on AR and causality of multi-nation stock market volatility for TAIEX forecasting
    • Wei LY (2011). An expanded Adaptive Neuro-Fuzzy Inference System (ANFIS) model based on AR and causality of multi-nation stock market volatility for TAIEX forecasting. Afr. J. Bus. Manag., 5(15): 6377-6387.
    • (2011) Afr. J. Bus. Manag. , vol.5 , Issue.15 , pp. 6377-6387
    • Wei, L.Y.1
  • 41
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA (1965). Fuzzy sets. Inform. Control, 8(3): 338-353.
    • (1965) Inform. Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1
  • 42
    • 77955426368 scopus 로고    scopus 로고
    • An application of neuro-fuzzy technology for analysis of the capture process
    • Zhou Q, Chan CW, Tontiwachwuthikul P (2010). An application of neuro-fuzzy technology for analysis of the capture process. Fuzzy sets Syst., 161(19): 2597-2611.
    • (2010) Fuzzy sets Syst. , vol.161 , Issue.19 , pp. 2597-2611
    • Zhou, Q.1    Chan, C.W.2    Tontiwachwuthikul, P.3
  • 43
    • 37249083060 scopus 로고    scopus 로고
    • Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    • Zounemat-Kermani M, Teshnehlab M (2008). Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl. Soft Comput., 8(2): 928-936.
    • (2008) Appl. Soft Comput. , vol.8 , Issue.2 , pp. 928-936
    • Zounemat-Kermani, M.1    Teshnehlab, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.