메뉴 건너뛰기




Volumn 23, Issue 2, 2009, Pages 213-223

Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks

Author keywords

Evaporation; Modelling; Multi layer perceptrons; Radial basis neural networks; Stephens Stewart method

Indexed keywords

BACKPROPAGATION; CONDUCTIVE PLASTICS; CYBERNETICS; EVAPORATION; PATTERN RECOGNITION SYSTEMS; PRESSURE EFFECTS; SUN; THERMAL EFFECTS; VAPORS;

EID: 61749102355     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.7126     Document Type: Article
Times cited : (78)

References (45)
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrological applications
    • ASCE Task Committee
    • ASCE Task Committee. 2000. Artificial neural networks in hydrology. II: hydrological applications. ASCE Journal of Hydrological Engineering 5(2): 124-137.
    • (2000) ASCE Journal of Hydrological Engineering , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead D, Lowe D. 1988. Multivariable functional interpolation and adaptive networks. Complex Systems 2: 321-355.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 7
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S, Cowan CFN, Grant PM. 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2(2): 302-309.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 8
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoglu HK. 2003. Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrological Science Journal 48(3): 349-361.
    • (2003) Hydrological Science Journal , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 9
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu HK, Kisi O. 2005. Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nordic Hydrology 36(1): 49-64.
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 10
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu HK, Kisi O. 2006. Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology 317: 221-238.
    • (2006) Journal of Hydrology , vol.317 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 13
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenco G. 1989. Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals and Systems 2: 303-314.
    • (1989) Mathematics of Control, Signals and Systems , vol.2 , pp. 303-314
    • Cybenco, G.1
  • 14
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson WC, Wilby R. 1998. An artificial neural network approach to rainfall-runoff modelling. Hydrological Science Journal 43(1): 47-66.
    • (1998) Hydrological Science Journal , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 15
    • 0037562812 scopus 로고    scopus 로고
    • Feed forward neural networks modelling for K-P interactions
    • El-Bakyr MY. 2003. Feed forward neural networks modelling for K-P interactions. Chaos, Solitons and Fractals 18(5): 995-1000.
    • (2003) Chaos, Solitons and Fractals , vol.18 , Issue.5 , pp. 995-1000
    • El-Bakyr, M.Y.1
  • 17
    • 1342287898 scopus 로고    scopus 로고
    • Modelling actual, reference and equilibrium evaporation from a temperate wet grassland
    • Gavin H, Agnew CA. 2004. Modelling actual, reference and equilibrium evaporation from a temperate wet grassland. Hydrological Processes 18: 229-246.
    • (2004) Hydrological Processes , vol.18 , pp. 229-246
    • Gavin, H.1    Agnew, C.A.2
  • 18
  • 20
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. 1989. Multilayer feed forward networks are universal approximators. Neural Networks 2: 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 21
    • 0036578261 scopus 로고    scopus 로고
    • Evaluation of class 'A' pan coefficients for estimating reference evapotranspiration in a humid location
    • Irmak S, Haman D, Jones JW. 2002. Evaluation of class 'A' pan coefficients for estimating reference evapotranspiration in a humid location. ASCE Journal of Irrigation and Drainage Engineering 128(3): 153-159.
    • (2002) ASCE Journal of Irrigation and Drainage Engineering , vol.128 , Issue.3 , pp. 153-159
    • Irmak, S.1    Haman, D.2    Jones, J.W.3
  • 22
    • 0022073385 scopus 로고
    • Evaluating evapotranspiration at local and regional scales
    • Jackson RD. 1985. Evaluating evapotranspiration at local and regional scales. Proceedings of the IEEE 73(6): 1086-1096.
    • (1985) Proceedings of the IEEE , vol.73 , Issue.6 , pp. 1086-1096
    • Jackson, R.D.1
  • 24
    • 31444439227 scopus 로고    scopus 로고
    • Artificial neural network models of daily pan evaporation
    • Keskin ME, Terzi O. 2006. Artificial neural network models of daily pan evaporation. ASCE Journal of Hydrological Engineering 11(1): 65-70.
    • (2006) ASCE Journal of Hydrological Engineering , vol.11 , Issue.1 , pp. 65-70
    • Keskin, M.E.1    Terzi, O.2
  • 25
    • 0038113313 scopus 로고    scopus 로고
    • Modelling of plasma etching using a generalized regression neural network
    • Kim B, Kim S, Kim K. 2003. Modelling of plasma etching using a generalized regression neural network. Vacuum 71: 497-503.
    • (2003) Vacuum , vol.71 , pp. 497-503
    • Kim, B.1    Kim, S.2    Kim, K.3
  • 26
    • 1642497522 scopus 로고    scopus 로고
    • River flow modelling using artificial neural networks
    • Kisi O. 2004a. River flow modelling using artificial neural networks. ASCE Journal of Hydrological Engineering 9(1): 60-63.
    • (2004) ASCE Journal of Hydrological Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 27
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation
    • Kisi O. 2004b. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation, Hydrological Science Journal 49(6): 1025-1040.
    • (2004) Hydrological Science Journal , vol.49 , Issue.6 , pp. 1025-1040
    • Kisi, O.1
  • 28
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Kisi O. 2005a. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Science Journal 50(4): 683-696.
    • (2005) Hydrological Science Journal , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 29
    • 12544259920 scopus 로고    scopus 로고
    • Daily river flow forecasting using artificial neural networks and auto-regressive models
    • Kisi O. 2005b. Daily river flow forecasting using artificial neural networks and auto-regressive models. Turkisk Journal of Engineering and Environmental Science 29: 9-20.
    • (2005) Turkisk Journal of Engineering and Environmental Science , vol.29 , pp. 9-20
    • Kisi, O.1
  • 30
    • 16344363303 scopus 로고    scopus 로고
    • Kisi O, Yildirim G. 2005a. Discussion of 'Estimating actual evapotranspiration from limited climatic data using neural computing technique' by K.P. Sudheer; A.K. Gosain; and K.S. Ramasastri. ASCE Journal of Irrigation and Drainage Engineering 131(2): 219-220.
    • Kisi O, Yildirim G. 2005a. Discussion of 'Estimating actual evapotranspiration from limited climatic data using neural computing technique' by K.P. Sudheer; A.K. Gosain; and K.S. Ramasastri. ASCE Journal of Irrigation and Drainage Engineering 131(2): 219-220.
  • 31
    • 85001838261 scopus 로고    scopus 로고
    • Kisi O, Yildirim G. 2005b. Discussion of 'Forecasting of reference evapotranspiration by artificial neural networks' by S. Trajkovic; B. Todorovic; and M. Stankovic. ASCE Journal of Irrigation and Drainage Engineering 131(4): 390-391.
    • Kisi O, Yildirim G. 2005b. Discussion of 'Forecasting of reference evapotranspiration by artificial neural networks' by S. Trajkovic; B. Todorovic; and M. Stankovic. ASCE Journal of Irrigation and Drainage Engineering 131(4): 390-391.
  • 33
    • 0038009289 scopus 로고    scopus 로고
    • Radial basis function networks applied to DNBR calculation in digital core protection systems
    • Lee GC, Chang SH. 2003. Radial basis function networks applied to DNBR calculation in digital core protection systems. Annals of Nuclear Energy 30: 1561-1572.
    • (2003) Annals of Nuclear Energy , vol.30 , pp. 1561-1572
    • Lee, G.C.1    Chang, S.H.2
  • 35
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minnes AW, Hall MJ. 1996. Artificial neural networks as rainfall-runoff models. Hydrological Science Journal 41(3): 399-416.
    • (1996) Hydrological Science Journal , vol.41 , Issue.3 , pp. 399-416
    • Minnes, A.W.1    Hall, M.J.2
  • 36
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio T, Girosi F. 1990. Regularization algorithms for learning that are equivalent to multilayer networks. Science 2247: 978-982.
    • (1990) Science , vol.2247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 37
    • 0032584544 scopus 로고    scopus 로고
    • Multi-season lake evaporation: Energy-budget estimates and CRLE model assessment with limited meteorological observations
    • Reis RJ, Dias NL. 1998. Multi-season lake evaporation: energy-budget estimates and CRLE model assessment with limited meteorological observations. Journal of Hydrology 208: 135-147.
    • (1998) Journal of Hydrology , vol.208 , pp. 135-147
    • Reis, R.J.1    Dias, N.L.2
  • 39
    • 0011180470 scopus 로고
    • Publication 62, International Association of Scientific Hydrology. International Union of Geodynamics and Geophysics, Berkeley, CA;
    • Stephens JC, Stewart EH. 1963. A comparison of procedures for computing evaporation and evapotranspiration. Publication 62, International Association of Scientific Hydrology. International Union of Geodynamics and Geophysics, Berkeley, CA; 123-133.
    • (1963) A comparison of procedures for computing evaporation and evapotranspiration , pp. 123-133
    • Stephens, J.C.1    Stewart, E.H.2
  • 41
    • 0242656262 scopus 로고    scopus 로고
    • Application of a neural network model in establishing a stage-discharge relationship for a tidal river
    • Supharatid S. 2003. Application of a neural network model in establishing a stage-discharge relationship for a tidal river. Hydrological Processes 17: 3085-3099.
    • (2003) Hydrological Processes , vol.17 , pp. 3085-3099
    • Supharatid, S.1
  • 42
    • 0038110938 scopus 로고    scopus 로고
    • Quantitative and qualitative analysis of VOCs mixtures by means of a microsensors array and different evaluation methods
    • Taurino AM, Distante C, Siciliano P, Vasanelli L. 2003. Quantitative and qualitative analysis of VOCs mixtures by means of a microsensors array and different evaluation methods. Sensors and Actuators 93: 117-125.
    • (2003) Sensors and Actuators , vol.93 , pp. 117-125
    • Taurino, A.M.1    Distante, C.2    Siciliano, P.3    Vasanelli, L.4
  • 43
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur G. 2002. Artificial neural networks for sheet sediment transport. Hydrological Science Journal 47(6): 879-892.
    • (2002) Hydrological Science Journal , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.