메뉴 건너뛰기




Volumn 27, Issue 13, 2013, Pages 4469-4492

Prediction of Urmia Lake Water-Level Fluctuations by Using Analytical, Linear Statistic and Intelligent Methods

Author keywords

Lake level; LLNF; PNN; Prediction; Simulation; Urmia Lake

Indexed keywords

AUTOREGRESSIVE WITH EXOGENOUS INPUTS; LAKE LEVEL FLUCTUATIONS; LAKE LEVELS; LLNF; PNN; SIMULATION; TRADITIONAL SIMULATORS; WATER-LEVEL FLUCTUATION;

EID: 84883792756     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-013-0420-2     Document Type: Article
Times cited : (63)

References (42)
  • 1
    • 78751572704 scopus 로고    scopus 로고
    • Fuzzy TOPSIS multi-criteria decision analysis applied to Karun reservoirs system
    • Afshar A, Mariño MA, Saadatpour M, Afshar A (2011) Fuzzy TOPSIS multi-criteria decision analysis applied to Karun reservoirs system. Water Resour Manag 25(2): 545-563.
    • (2011) Water Resour Manag , vol.25 , Issue.2 , pp. 545-563
    • Afshar, A.1    Mariño, M.A.2    Saadatpour, M.3    Afshar, A.4
  • 2
    • 33846458992 scopus 로고    scopus 로고
    • Forecasting surface water level fluctuations of Lake Van by artificial neural networks
    • Altunkaynak A (2007) Forecasting surface water level fluctuations of Lake van by artificial neural networks. Water Resour Manag 21(2): 399-408.
    • (2007) Water Resour Manag , vol.21 , Issue.2 , pp. 399-408
    • Altunkaynak, A.1
  • 3
    • 4644260364 scopus 로고    scopus 로고
    • Lake-level changes during the past 100,000 years at Lake Baikal, southern Siberia
    • Astushi U, Masaki T, Yoshio I (2004) Lake-level changes during the past 100, 000 years at Lake Baikal, southern Siberia. Quat Res 62(2): 214-222.
    • (2004) Quat Res , vol.62 , Issue.2 , pp. 214-222
    • Astushi, U.1    Masaki, T.2    Yoshio, I.3
  • 4
    • 43149114256 scopus 로고    scopus 로고
    • An application of artificial intelligence for rainfall runoff modeling
    • Aytek A, Alp M (2008) An application of artificial intelligence for rainfall runoff modeling. J Earth Syst Sci 117(2): 145-155.
    • (2008) J Earth Syst Sci , vol.117 , Issue.2 , pp. 145-155
    • Aytek, A.1    Alp, M.2
  • 5
    • 0036997582 scopus 로고    scopus 로고
    • Rainfall runoff modelling based on genetic programming
    • Babovic V, Keijzer M (2002) Rainfall runoff modelling based on genetic programming. Nord Hydrol 33(5): 331-346.
    • (2002) Nord Hydrol , vol.33 , Issue.5 , pp. 331-346
    • Babovic, V.1    Keijzer, M.2
  • 6
    • 85079333355 scopus 로고    scopus 로고
    • Nonlinear simulator model identification of a walking beam furnace using recurrent local linear neuro-fuzzy network
    • Banadaki DH, Nozari HA, Kakahaji H (2011) Nonlinear simulator model identification of a walking beam furnace using recurrent local linear neuro-fuzzy network. Int J Control Autom 4(4): 123-134.
    • (2011) Int J Control Autom , vol.4 , Issue.4 , pp. 123-134
    • Banadaki, D.H.1    Nozari, H.A.2    Kakahaji, H.3
  • 7
    • 0030705992 scopus 로고    scopus 로고
    • Using rainfall-runoff modeling to interpret lake level data
    • Bengtsson L, Malm J (1997) Using rainfall-runoff modeling to interpret lake level data. J Paleolimnol 18(3): 235-248.
    • (1997) J Paleolimnol , vol.18 , Issue.3 , pp. 235-248
    • Bengtsson, L.1    Malm, J.2
  • 8
    • 0022752513 scopus 로고
    • Correlation based model validity tests for non-linear models
    • Billings SA, Voon WSF (1986) Correlation based model validity tests for non-linear models. Int J Control 44(1): 235-244.
    • (1986) Int J Control , vol.44 , Issue.1 , pp. 235-244
    • Billings, S.A.1    Voon, W.S.F.2
  • 9
    • 0023381883 scopus 로고
    • Piecewise linear identification of non-linear systems
    • Billings SA, Voon WSF (1987) Piecewise linear identification of non-linear systems. Int J control 46(1): 215-235.
    • (1987) Int J Control , vol.46 , Issue.1 , pp. 215-235
    • Billings, S.A.1    Voon, W.S.F.2
  • 10
    • 84972496372 scopus 로고
    • Influential observations, high leverage points, and outliers in linear regression
    • Chatterjee S, Hadi AS (1986) Influential observations, high leverage points, and outliers in linear regression. Stat Sci 1(3): 379-416.
    • (1986) Stat Sci , vol.1 , Issue.3 , pp. 379-416
    • Chatterjee, S.1    Hadi, A.S.2
  • 11
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko G (1989) Approximation by superposition of a sigmoidal function. Math Control Signals Syst 2(4): 303-314.
    • (1989) Math Control Signals Syst , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 12
    • 77950864370 scopus 로고    scopus 로고
    • Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks
    • Ghorbani MA, Khatibi R, Aytek A, Makarynskyy O, Shiri J (2010) Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks. Comput Geosci 36(5): 620-627.
    • (2010) Comput Geosci , vol.36 , Issue.5 , pp. 620-627
    • Ghorbani, M.A.1    Khatibi, R.2    Aytek, A.3    Makarynskyy, O.4    Shiri, J.5
  • 13
    • 78751576467 scopus 로고    scopus 로고
    • Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eǧirdir lake level forecasting
    • Güldal V, Tongal H (2010) Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eǧirdir lake level forecasting. Water Resour Manag 24(1): 105-128.
    • (2010) Water Resour Manag , vol.24 , Issue.1 , pp. 105-128
    • Güldal, V.1    Tongal, H.2
  • 14
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6): 989-993.
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 15
    • 82955233090 scopus 로고    scopus 로고
    • Determining the main factors in declining the Urmia lake level by using system dynamics modeling
    • Hassanzadeh E, Zarghami M, Hassanzadeh Y (2012) Determining the main factors in declining the Urmia lake level by using system dynamics modeling. Water Resour Manag 26(1): 129-145.
    • (2012) Water Resour Manag , vol.26 , Issue.1 , pp. 129-145
    • Hassanzadeh, E.1    Zarghami, M.2    Hassanzadeh, Y.3
  • 17
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5): 359-366.
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 19
    • 84883770112 scopus 로고    scopus 로고
    • Environmental crisis of Lake Urmia
    • Iranian Society of Consulting Engineers
    • Iranian Society of Consulting Engineers (2011) Environmental crisis of Lake Urmia. J Consult Eng 53: 30-52.
    • (2011) J Consult Eng , vol.53 , pp. 30-52
  • 20
    • 0035370239 scopus 로고    scopus 로고
    • Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c. 1840-1990)
    • Jones RN, McMahon TA, Bowler JM (2001) Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c. 1840-1990). J Hydrol 246(1-4): 159-180.
    • (2001) J Hydrol , vol.246 , Issue.1-4 , pp. 159-180
    • Jones, R.N.1    McMahon, T.A.2    Bowler, J.M.3
  • 21
    • 0033167439 scopus 로고    scopus 로고
    • Cumulative departures model for lake-water fluctuations
    • Kadi{dotless}oǧlu M, Sen Z, Batur F (1999) Cumulative departures model for lake-water fluctuations. J Hydrol Eng 4(3): 245-250.
    • (1999) J Hydrol Eng , vol.4 , Issue.3 , pp. 245-250
    • Kadioǧlu, M.1    Sen, Z.2    Batur, F.3
  • 22
    • 84883778840 scopus 로고    scopus 로고
    • Forecasting water level fluctuations of Urmieh lake using gene expression programming and adaptive neuro-fuzzy inference system
    • Karimi S, Shiri J, Kisi O, Makarynskyy O (2012) Forecasting water level fluctuations of Urmieh lake using gene expression programming and adaptive neuro-fuzzy inference system. Int J Ocean Clim Syst 3(2): 109-126.
    • (2012) Int J Ocean Clim Syst , vol.3 , Issue.2 , pp. 109-126
    • Karimi, S.1    Shiri, J.2    Kisi, O.3    Makarynskyy, O.4
  • 23
    • 84870216315 scopus 로고    scopus 로고
    • Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia
    • Karimi S, Kisi O, Shiri J, Makarynskyy O (2013) Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Comput Geosci 52: 50-59.
    • (2013) Comput Geosci , vol.52 , pp. 50-59
    • Karimi, S.1    Kisi, O.2    Shiri, J.3    Makarynskyy, O.4
  • 25
  • 26
    • 84857912130 scopus 로고    scopus 로고
    • Forecasting daily lake levels using artificial intelligence approaches
    • Kisi O, Shiri J, Nikoofar B (2012) Forecasting daily lake levels using artificial intelligence approaches. Comput Geosci 41: 169-180.
    • (2012) Comput Geosci , vol.41 , pp. 169-180
    • Kisi, O.1    Shiri, J.2    Nikoofar, B.3
  • 29
    • 23044512802 scopus 로고    scopus 로고
    • A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact
    • Marce R, Comerma M, Garcia JC, Armengol J (2004) A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnol Oceanogr Methods 2: 342-355.
    • (2004) Limnol Oceanogr Methods , vol.2 , pp. 342-355
    • Marce, R.1    Comerma, M.2    Garcia, J.C.3    Armengol, J.4
  • 33
    • 84864632694 scopus 로고    scopus 로고
    • Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks
    • Nozari HA, Banadaki HD, Mokhtare M, Vahed SH (2012a) Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks. J Zhejiang Univ Sci C 13(6): 403-412.
    • (2012) J Zhejiang Univ Sci C , vol.13 , Issue.6 , pp. 403-412
    • Nozari, H.A.1    Banadaki, H.D.2    Mokhtare, M.3    Vahed, S.H.4
  • 34
    • 84861192245 scopus 로고    scopus 로고
    • Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques
    • Nozari HA, Simani S, Shoorehdeli MA, Banadaki DH (2012b) Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques. Neurocomputing 91(15): 29-47.
    • (2012) Neurocomputing , vol.91 , Issue.15 , pp. 29-47
    • Nozari, H.A.1    Simani, S.2    Shoorehdeli, M.A.3    Banadaki, D.H.4
  • 35
    • 84855212247 scopus 로고    scopus 로고
    • Multi-reservoir operation rules: multi-swarm PSO-based optimization approach
    • Ostadrahimi L, Mariño MA, Afshar A (2012) Multi-reservoir operation rules: multi-swarm PSO-based optimization approach. Water Resour Manag 26(2): 407-427.
    • (2012) Water Resour Manag , vol.26 , Issue.2 , pp. 407-427
    • Ostadrahimi, L.1    Mariño, M.A.2    Afshar, A.3
  • 36
    • 84874271536 scopus 로고    scopus 로고
    • Effect of global warming on intensity and frequency curves of precipitation, case study of Northwestern Iran
    • Roshan G, Ghanghermeh AA, Nasrabadi T, Meimandi JB (2013) Effect of global warming on intensity and frequency curves of precipitation, case study of Northwestern Iran. Water Resour Manag 27(5): 1563-1579.
    • (2013) Water Resour Manag , vol.27 , Issue.5 , pp. 1563-1579
    • Roshan, G.1    Ghanghermeh, A.A.2    Nasrabadi, T.3    Meimandi, J.B.4
  • 37
    • 84876984605 scopus 로고    scopus 로고
    • Improved wavelet modeling framework for hydrologic time series forecasting
    • Sang YF (2013) Improved wavelet modeling framework for hydrologic time series forecasting. Water Resour Manag 27(8): 2807-2821.
    • (2013) Water Resour Manag , vol.27 , Issue.8 , pp. 2807-2821
    • Sang, Y.F.1
  • 38
    • 83755182713 scopus 로고    scopus 로고
    • Prediction of short-term operational water levels using an adaptive neuro-fuzzy inference system
    • Shiri J, Makarynskyy O, Kisi O, Dierickx W, Fard A (2011) Prediction of short-term operational water levels using an adaptive neuro-fuzzy inference system. J Waterw Port Coast Ocean Eng 137(6): 344-354.
    • (2011) J Waterw Port Coast Ocean Eng , vol.137 , Issue.6 , pp. 344-354
    • Shiri, J.1    Makarynskyy, O.2    Kisi, O.3    Dierickx, W.4    Fard, A.5
  • 39
    • 84871434337 scopus 로고    scopus 로고
    • Hydrological drought assessment in Northwestern Iran based on Streamflow Drought Index (SDI)
    • Tabari H, Nikbakht J, Talaee PH (2013) Hydrological drought assessment in Northwestern Iran based on Streamflow Drought Index (SDI). Water Resour Manag 27(1): 137-151.
    • (2013) Water Resour Manag , vol.27 , Issue.1 , pp. 137-151
    • Tabari, H.1    Nikbakht, J.2    Talaee, P.H.3
  • 40
    • 78650697073 scopus 로고    scopus 로고
    • Uncertainty analysis for the forecast of lake level fluctuations using ensembles of ANN and ANFIS models
    • Talebizadeh M, Moridnejad A (2011) Uncertainty analysis for the forecast of lake level fluctuations using ensembles of ANN and ANFIS models. Expert Syst Appl 38(4): 4126-4135.
    • (2011) Expert Syst Appl , vol.38 , Issue.4 , pp. 4126-4135
    • Talebizadeh, M.1    Moridnejad, A.2
  • 41
    • 0030778350 scopus 로고    scopus 로고
    • Predicting Caspian Sea surface water level by ANN and ARIMA models
    • Vaziri M (1997) Predicting Caspian Sea surface water level by ANN and ARIMA models. Waterw Port Coast Ocean Eng 123(4): 158-162.
    • (1997) Waterw Port Coast Ocean Eng , vol.123 , Issue.4 , pp. 158-162
    • Vaziri, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.