메뉴 건너뛰기




Volumn 25, Issue 10, 2011, Pages 2525-2541

Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network

Author keywords

Artificial neural networks; Sigmoid function; Steepness coefficient; Water level forecasting

Indexed keywords

ARTIFICIAL NEURAL NETWORK; COMPUTATIONAL APPROACH; COMPUTING MODEL; DATA SETS; DATA VALIDATION; EFFICIENCY COEFFICIENT; FLOOD PREDICTION; FORECASTING ACCURACY; MULTI-LAYER PERCEPTRON NEURAL NETWORKS; RIVER FLOW; ROOT MEAN SQUARE ERRORS; SIGMOID FUNCTION; STATISTICAL INDICES; STEEPNESS COEFFICIENT; WATER LEVEL FORECASTING; WATER RESOURCES MANAGEMENT; WEIGHT INITIALIZATION;

EID: 79960702239     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-011-9824-z     Document Type: Article
Times cited : (31)

References (34)
  • 1
    • 4644274685 scopus 로고    scopus 로고
    • Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data
    • Agarwal A, Singh RD (2004) Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data. Water Resour Manage 18: 285-300.
    • (2004) Water Resour Manage , vol.18 , pp. 285-300
    • Agarwal, A.1    Singh, R.D.2
  • 2
    • 34248202148 scopus 로고    scopus 로고
    • Artificial neural network model for synthetic stream flow generation
    • Ahmed JA, Sarma AK (2007) Artificial neural network model for synthetic stream flow generation. Water Resour Manage 21(6): 1015-1029.
    • (2007) Water Resour Manage , vol.21 , Issue.6 , pp. 1015-1029
    • Ahmed, J.A.1    Sarma, A.K.2
  • 3
    • 33344463490 scopus 로고    scopus 로고
    • Water level forecasting through fuzzy logic and neural network approaches
    • Alvisi S, Mascellani G, Franchini M, Bardossy A (2006) Water level forecasting through fuzzy logic and neural network approaches. Hydrol Earth Syst Sci 10(1): 1-17.
    • (2006) Hydrol Earth Syst Sci , vol.10 , Issue.1 , pp. 1-17
    • Alvisi, S.1    Mascellani, G.2    Franchini, M.3    Bardossy, A.4
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: preliminary concepts
    • ASCE Task Committee on the application of ANN in Hydrology
    • ASCE Task Committee on the application of ANN in Hydrology (2000a) Artificial neural networks in hydrology. I: preliminary concepts. J Hydrol Eng 5(2): 115-123.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: hydrological applications
    • ASCE Task Committee on the application of ANN in Hydrology
    • ASCE Task Committee on the application of ANN in Hydrology (2000b) Artificial neural networks in hydrology. II: hydrological applications. J Hydrol Eng 5(2): 124-137.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 124-137
  • 6
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural network technique-case study: river flow forecasting
    • Atiya AF, El-Shoura SM, Shaheen SI, El-Sherif MS (1999) A comparison between neural network technique-case study: river flow forecasting. IEEE Trans Neural Netw 10(2): 402-409.
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.2 , pp. 402-409
    • Atiya, A.F.1    El-Shoura, S.M.2    Shaheen, S.I.3    El-Sherif, M.S.4
  • 7
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • Barron AR (1994) Approximation and estimation bounds for artificial neural networks. Mach Learn 14: 115-133.
    • (1994) Mach Learn , vol.14 , pp. 115-133
    • Barron, A.R.1
  • 9
    • 0036478261 scopus 로고    scopus 로고
    • A neural networks approach for deriving irrigation reservoir operating rules
    • Cancelliere A, Gi{dotless}uliano G, Ancarani A, Rossi G (2002) A neural networks approach for deriving irrigation reservoir operating rules. Water Resour Manage 16: 71-88.
    • (2002) Water Resour Manage , vol.16 , pp. 71-88
    • Cancelliere, A.1    Giuliano, G.2    Ancarani, A.3    Rossi, G.4
  • 10
    • 26844446420 scopus 로고    scopus 로고
    • Neural network based decision support model for optimal reservoir operation
    • Chandramouli V, Deka P (2005) Neural network based decision support model for optimal reservoir operation. Water Resour Manage 19: 447-464.
    • (2005) Water Resour Manage , vol.19 , pp. 447-464
    • Chandramouli, V.1    Deka, P.2
  • 11
    • 60749116339 scopus 로고    scopus 로고
    • Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks
    • Chauhan S, Shrivastava RK (2008) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manage 23: 825-837.
    • (2008) Water Resour Manage , vol.23 , pp. 825-837
    • Chauhan, S.1    Shrivastava, R.K.2
  • 12
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
    • Chiang YM, Chang LC, Chang FJ (2004) Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. J Hydrol 290: 297-311.
    • (2004) J Hydrol , vol.290 , pp. 297-311
    • Chiang, Y.M.1    Chang, L.C.2    Chang, F.J.3
  • 13
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu HK, Kisi O (2006) Methods to improve the neural network performance in suspended sediment estimation. J Hydrol 317: 221-238.
    • (2006) J Hydrol , vol.317 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 14
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped Training Approach
    • Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped Training Approach. J Hydrol 230: 244-257.
    • (2000) J Hydrol , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 15
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan High Dam
    • El-Shafie A, Reda Taha M, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan High Dam. Water Resour Manage 21(3): 533-556.
    • (2007) Water Resour Manage , vol.21 , Issue.3 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 16
    • 63049105407 scopus 로고    scopus 로고
    • Neural network model for Nile river inflow forecasting based on correlation analysis of historical inflow data
    • El-Shafie A, Noureldin AE, Taha MR, Basri H (2008) Neural network model for Nile river inflow forecasting based on correlation analysis of historical inflow data. J Appl Sci 8(24): 4487-4499.
    • (2008) J Appl Sci , vol.8 , Issue.24 , pp. 4487-4499
    • El-Shafie, A.1    Noureldin, A.E.2    Taha, M.R.3    Basri, H.4
  • 17
    • 69249208624 scopus 로고    scopus 로고
    • Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements
    • El-Shafie A, Abdin AE, Noureldin A, Taha MR (2009) Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements. Water Resour Manage 23(11): 2289-2315.
    • (2009) Water Resour Manage , vol.23 , Issue.11 , pp. 2289-2315
    • El-Shafie, A.1    Abdin, A.E.2    Noureldin, A.3    Taha, M.R.4
  • 18
    • 61749103449 scopus 로고    scopus 로고
    • Efficient selection of inputs for artificial neural network models
    • Modelling and Simulation Society of Australia and New Zealand, December 2005/Andre Zerger and Robert M. Argent (eds)
    • Fernando TMKG, Maier HR, Dandy GC, May RJ (2005) Efficient selection of inputs for artificial neural network models, Proc. of MODSIM 2005 International Congress on Modelling and Simulation: Modelling and Simulation Society of Australia and New Zealand, December 2005/Andre Zerger and Robert M. Argent (eds) 1806-1812.
    • (2005) Proc. of MODSIM 2005 International Congress on Modelling and Simulation , pp. 1806-1812
    • Fernando, T.M.K.G.1    Maier, H.R.2    Dandy, G.C.3    May, R.J.4
  • 19
    • 0030121137 scopus 로고    scopus 로고
    • Optimization of feedforward neural networks
    • Han J, Moraga C, Sinne S (1996) Optimization of feedforward neural networks. Eng Appl Artif Intell 9(2): 109-119.
    • (1996) Eng Appl Artif Intell , vol.9 , Issue.2 , pp. 109-119
    • Han, J.1    Moraga, C.2    Sinne, S.3
  • 20
    • 0030121137 scopus 로고    scopus 로고
    • Optimization of feedforward neural networks
    • Han J, Moraga C, Sinne S (1996) Optimization of feedforward neural networks. Engng Applic Artif Intell 9(2): 109-111.
    • (1996) Engng Applic Artif Intell , vol.9 , Issue.2 , pp. 109-111
    • Han, J.1    Moraga, C.2    Sinne, S.3
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2: 359-366.
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 22
    • 77956852466 scopus 로고    scopus 로고
    • Application of Artificial Neural Networks in Flow Discharge Prediction for Fitzroy River, Australia
    • Joorabchi A, Zhang H, Blumenstein M (2007) Application of Artificial Neural Networks in Flow Discharge Prediction for Fitzroy River, Australia. J Coast Res SI 50: 287-291.
    • (2007) J Coast Res SI , vol.50 , pp. 287-291
    • Joorabchi, A.1    Zhang, H.2    Blumenstein, M.3
  • 23
    • 33746022312 scopus 로고    scopus 로고
    • Neural networks forecasting of flood discharge at an unmeasured station using river upstream information
    • Kerh T, Lee CS (2006) Neural networks forecasting of flood discharge at an unmeasured station using river upstream information. Adv Eng Softw 37: 533-543.
    • (2006) Adv Eng Softw , vol.37 , pp. 533-543
    • Kerh, T.1    Lee, C.S.2
  • 24
    • 43949087486 scopus 로고    scopus 로고
    • Structural optimisation and input selection of an artificial neural network for river level prediction
    • Leahy P, Kiely G, Gearóid C (2008) Structural optimisation and input selection of an artificial neural network for river level prediction. J Hydrol 355: 192-201.
    • (2008) J Hydrol , vol.355 , pp. 192-201
    • Leahy, P.1    Kiely, G.2    Gearóid, C.3
  • 25
    • 79960701691 scopus 로고    scopus 로고
    • Application of rainfall-runoff models to Zard River catchment's
    • Rahnama MB, Barani GA (2005) Application of rainfall-runoff models to Zard River catchment's. Am J Environ Sci 1(1): 86-89.
    • (2005) Am J Environ Sci , vol.1 , Issue.1 , pp. 86-89
    • Rahnama, M.B.1    Barani, G.A.2
  • 26
    • 40549084354 scopus 로고    scopus 로고
    • Event-based sediment yield modeling using artificial neural network
    • Rai RK, Mathur BS (2008) Event-based sediment yield modeling using artificial neural network. Water Resour Manage 22(4): 423-441.
    • (2008) Water Resour Manage , vol.22 , Issue.4 , pp. 423-441
    • Rai, R.K.1    Mathur, B.S.2
  • 27
    • 0036698155 scopus 로고    scopus 로고
    • Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting
    • Shamseldin AY, Nasr AE, O'Connor KM (2002) Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting. Hydrol Earth Syst Sci 6(4): 671-684.
    • (2002) Hydrol Earth Syst Sci , vol.6 , Issue.4 , pp. 671-684
    • Shamseldin, A.Y.1    Nasr, A.E.2    O'Connor, K.M.3
  • 28
    • 67149100967 scopus 로고    scopus 로고
    • Suitability of artificial neural network in daily flow forecasting
    • Solaimani K, Darvari Z (2008) Suitability of artificial neural network in daily flow forecasting. J Appl Sci 8(17): 2949-2957.
    • (2008) J Appl Sci , vol.8 , Issue.17 , pp. 2949-2957
    • Solaimani, K.1    Darvari, Z.2
  • 29
    • 36849063708 scopus 로고    scopus 로고
    • Application of fuzzy systems and artificial neural networks for flood forecasting
    • Tareghian R, Kashefipour SM (2007) Application of fuzzy systems and artificial neural networks for flood forecasting. J Appl Sci 7(22): 3451-3459.
    • (2007) J Appl Sci , vol.7 , Issue.22 , pp. 3451-3459
    • Tareghian, R.1    Kashefipour, S.M.2
  • 30
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: role of calibration data in conceptual and neural network modeling
    • doi:10.1029/2006WR005383
    • Toth E, Brath A (2007) Multistep ahead streamflow forecasting: role of calibration data in conceptual and neural network modeling. Water Resour Res 43: W11405. doi: 10. 1029/2006WR005383.
    • (2007) Water Resour Res , vol.43 , pp. 11405
    • Toth, E.1    Brath, A.2
  • 31
    • 63649151694 scopus 로고    scopus 로고
    • River flow estimation from upstream flow records by artificial intelligence methods
    • Turan ME, Yurdusev MA (2009) River flow estimation from upstream flow records by artificial intelligence methods. J Hydrol 369: 71-77.
    • (2009) J Hydrol , vol.369 , pp. 71-77
    • Turan, M.E.1    Yurdusev, M.A.2
  • 32
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu CL, Chau KW, Li YS (2009) Methods to improve neural network performance in daily flows prediction. J Hydrol 372: 80-93.
    • (2009) J Hydrol , vol.372 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 33
    • 0033019602 scopus 로고    scopus 로고
    • Short term stream flow forecasting using artificial neural networks
    • Zealand CM, Burn DH, Simonovic SP (1999) Short term stream flow forecasting using artificial neural networks. J Hydrol 214: 32-48.
    • (1999) J Hydrol , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 34
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14: 35-62.
    • (1998) Int J Forecast , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.