-
1
-
-
84962294346
-
Diabetes and cardiovascular disease: pathophysiology of a life-threatening epidemic
-
King RJ, Grant PJ. Diabetes and cardiovascular disease: pathophysiology of a life-threatening epidemic. Herz. 2016;41(3):184-192.
-
(2016)
Herz
, vol.41
, Issue.3
, pp. 184-192
-
-
King, R.J.1
Grant, P.J.2
-
2
-
-
48749113401
-
Targeting bile-acid signalling for metabolic diseases
-
Thomas C, Pellicciari R, Pruzanski M, et al. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7(8):678-693.
-
(2008)
Nat Rev Drug Discov
, vol.7
, Issue.8
, pp. 678-693
-
-
Thomas, C.1
Pellicciari, R.2
Pruzanski, M.3
-
3
-
-
84905273290
-
Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion
-
Sonne DP, Hansen M, Knop FK. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. Eur J Endocrinol. 2014;171(2):R47-R65.
-
(2014)
Eur J Endocrinol
, vol.171
, Issue.2
, pp. R47-R65
-
-
Sonne, D.P.1
Hansen, M.2
Knop, F.K.3
-
4
-
-
84978872468
-
Involvement of glucagon-like peptide-1 in the glucose-lowering effect of metformin
-
Bahne E, Hansen M, Bronden A, et al. Involvement of glucagon-like peptide-1 in the glucose-lowering effect of metformin. Diabetes Obes Metab. 2016;18(10):955-961.
-
(2016)
Diabetes Obes Metab
, vol.18
, Issue.10
, pp. 955-961
-
-
Bahne, E.1
Hansen, M.2
Bronden, A.3
-
5
-
-
35748957503
-
The physiology of glucagon-like peptide 1
-
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409-1439.
-
(2007)
Physiol Rev
, vol.87
, Issue.4
, pp. 1409-1439
-
-
Holst, J.J.1
-
6
-
-
84987741470
-
Characterizing the distribution of enteroendocrine cells in patients with type 2 diabetes and non-diabetic controls [abstract]
-
Jorsal T, Rhee NA, Pedersen J, et al. Characterizing the distribution of enteroendocrine cells in patients with type 2 diabetes and non-diabetic controls [abstract]. Diabetes. 2015;64(S1):2054-P.
-
(2015)
Diabetes
, vol.64
, Issue.S1
, pp. 2054
-
-
Jorsal, T.1
Rhee, N.A.2
Pedersen, J.3
-
7
-
-
34547586659
-
Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state?
-
Knop FK, Vilsboll T, Hojberg PV, et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes. 2007;56(8):1951-1959.
-
(2007)
Diabetes
, vol.56
, Issue.8
, pp. 1951-1959
-
-
Knop, F.K.1
Vilsboll, T.2
Hojberg, P.V.3
-
8
-
-
0037241085
-
Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects
-
Vilsboll T, Agerso H, Krarup T, et al. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab. 2003;88(1):220-224.
-
(2003)
J Clin Endocrinol Metab
, vol.88
, Issue.1
, pp. 220-224
-
-
Vilsboll, T.1
Agerso, H.2
Krarup, T.3
-
9
-
-
15044354562
-
Glucagon-related peptide 1 (GLP-1): hormone and neurotransmitter
-
Larsen PJ, Holst JJ. Glucagon-related peptide 1 (GLP-1): hormone and neurotransmitter. Regul Pept. 2005;128(2):97-107.
-
(2005)
Regul Pept
, vol.128
, Issue.2
, pp. 97-107
-
-
Larsen, P.J.1
Holst, J.J.2
-
10
-
-
0033303516
-
Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1-(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine
-
Hansen L, Deacon CF, Orskov C, et al. Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1-(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology. 1999;140(11):5356-5363.
-
(1999)
Endocrinology
, vol.140
, Issue.11
, pp. 5356-5363
-
-
Hansen, L.1
Deacon, C.F.2
Orskov, C.3
-
11
-
-
0842325280
-
Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells
-
Nakagawa A, Satake H, Nakabayashi H, et al. Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells. Auton Neurosci. 2004;110(1):36-43.
-
(2004)
Auton Neurosci
, vol.110
, Issue.1
, pp. 36-43
-
-
Nakagawa, A.1
Satake, H.2
Nakabayashi, H.3
-
12
-
-
0033696456
-
Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms
-
Balkan B, Li X. Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms. Am J Physiol. 2000;279(4):R1449-R1454.
-
(2000)
Am J Physiol
, vol.279
, Issue.4
, pp. R1449-R1454
-
-
Balkan, B.1
Li, X.2
-
13
-
-
0030853076
-
Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms
-
Imeryuz N, Yegen BC, Bozkurt A, et al. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273(4, pt 1):G920-G927.
-
(1997)
Am J Physiol
, vol.273
, pp. G920-G927
-
-
Imeryuz, N.1
Yegen, B.C.2
Bozkurt, A.3
-
14
-
-
0141532690
-
A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line
-
Gribble FM, Williams L, Simpson AK, et al. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes. 2003;52(5):1147-1154.
-
(2003)
Diabetes
, vol.52
, Issue.5
, pp. 1147-1154
-
-
Gribble, F.M.1
Williams, L.2
Simpson, A.K.3
-
15
-
-
84856509724
-
Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2
-
Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364-371.
-
(2012)
Diabetes
, vol.61
, Issue.2
, pp. 364-371
-
-
Tolhurst, G.1
Heffron, H.2
Lam, Y.S.3
-
16
-
-
56049105157
-
Incretin and islet hormonal responses to fat and protein ingestion in healthy men
-
Carr RD, Larsen MO, Winzell MS, et al. Incretin and islet hormonal responses to fat and protein ingestion in healthy men. Am J Physiol. 2008;295(4):E779-E784.
-
(2008)
Am J Physiol
, vol.295
, Issue.4
, pp. E779-E784
-
-
Carr, R.D.1
Larsen, M.O.2
Winzell, M.S.3
-
17
-
-
84878808238
-
Pharmacology, physiology, and mechanisms of incretin hormone action
-
Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819-837.
-
(2013)
Cell Metab
, vol.17
, Issue.6
, pp. 819-837
-
-
Campbell, J.E.1
Drucker, D.J.2
-
18
-
-
84962082144
-
A protein preload enhances the glucose-lowering efficacy of vildagliptin in type 2 diabetes
-
Wu T, Little TJ, Bound MJ, et al. A protein preload enhances the glucose-lowering efficacy of vildagliptin in type 2 diabetes. Diabetes Care. 2016;39(4):511-517.
-
(2016)
Diabetes Care
, vol.39
, Issue.4
, pp. 511-517
-
-
Wu, T.1
Little, T.J.2
Bound, M.J.3
-
19
-
-
50249180215
-
Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics
-
Hofmann AF, Hagey LR. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008;65(16):2461-2483.
-
(2008)
Cell Mol Life Sci
, vol.65
, Issue.16
, pp. 2461-2483
-
-
Hofmann, A.F.1
Hagey, L.R.2
-
20
-
-
0037379362
-
Bile salt transporters: molecular characterization, function, and regulation
-
Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 2003;83(2):633-671.
-
(2003)
Physiol Rev
, vol.83
, Issue.2
, pp. 633-671
-
-
Trauner, M.1
Boyer, J.L.2
-
21
-
-
0015151665
-
Concentrating function of the gallbladder
-
Wheeler HO. Concentrating function of the gallbladder. Am J Med. 1971;51(5):588-595.
-
(1971)
Am J Med
, vol.51
, Issue.5
, pp. 588-595
-
-
Wheeler, H.O.1
-
22
-
-
70449729508
-
Chronic diarrhea caused by idiopathic bile acid malabsorption: an explanation at last
-
Hofmann AF. Chronic diarrhea caused by idiopathic bile acid malabsorption: an explanation at last. Expert Rev Gastroenterol Hepatol. 2009;3(5):461-464.
-
(2009)
Expert Rev Gastroenterol Hepatol
, vol.3
, Issue.5
, pp. 461-464
-
-
Hofmann, A.F.1
-
23
-
-
84866125785
-
Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers
-
Adrian TE, Gariballa S, Parekh KA, et al. Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers. Diabetologia. 2012;55(9):2343-2347.
-
(2012)
Diabetologia
, vol.55
, Issue.9
, pp. 2343-2347
-
-
Adrian, T.E.1
Gariballa, S.2
Parekh, K.A.3
-
24
-
-
84946071276
-
Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors
-
Brighton CA, Rievaj J, Kuhre RE, et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors. Endocrinology. 2015;156(11):3961-3970.
-
(2015)
Endocrinology
, vol.156
, Issue.11
, pp. 3961-3970
-
-
Brighton, C.A.1
Rievaj, J.2
Kuhre, R.E.3
-
25
-
-
84940719531
-
The bile acid chenodeoxycholic acid increases human brown adipose tissue cctivity
-
Broeders EP, Nascimento EB, Havekes B, et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue cctivity. Cell Metab. 2015;22(3):418-426.
-
(2015)
Cell Metab
, vol.22
, Issue.3
, pp. 418-426
-
-
Broeders, E.P.1
Nascimento, E.B.2
Havekes, B.3
-
26
-
-
84946088116
-
Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells
-
Trabelsi MS, Daoudi M, Prawitt J, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015;6:7629.
-
(2015)
Nat Commun
, vol.6
, pp. 7629
-
-
Trabelsi, M.S.1
Daoudi, M.2
Prawitt, J.3
-
27
-
-
84876326720
-
Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans
-
Wu T, Bound MJ, Standfield SD, et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes Metab. 2013;15(5):474-477.
-
(2013)
Diabetes Obes Metab
, vol.15
, Issue.5
, pp. 474-477
-
-
Wu, T.1
Bound, M.J.2
Standfield, S.D.3
-
28
-
-
84961784129
-
The effect of chenodeoxycholic acid and the bile acid sequestrant colesevelam on glucagon-like peptide-1 secretion
-
Hansen M, Scheltema MJ, Sonne DP, et al. The effect of chenodeoxycholic acid and the bile acid sequestrant colesevelam on glucagon-like peptide-1 secretion. Diabetes Obes Metab. 2016;18(6):571-580.
-
(2016)
Diabetes Obes Metab
, vol.18
, Issue.6
, pp. 571-580
-
-
Hansen, M.1
Scheltema, M.J.2
Sonne, D.P.3
-
29
-
-
84964896040
-
Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet alpha cells to promote glucose homeostasis
-
Kumar DP, Asgharpour A, Mirshahi F, et al. Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet alpha cells to promote glucose homeostasis. J Biol Chem. 2016;291(13):6626-6640.
-
(2016)
J Biol Chem
, vol.291
, Issue.13
, pp. 6626-6640
-
-
Kumar, D.P.1
Asgharpour, A.2
Mirshahi, F.3
-
30
-
-
77953403465
-
Bile-induced secretion of glucagon-like peptide-1: pathophysiological implications in type 2 diabetes?
-
Knop FK. Bile-induced secretion of glucagon-like peptide-1: pathophysiological implications in type 2 diabetes? Am J Physiol. 2010;299(1):E10-E13.
-
(2010)
Am J Physiol
, vol.299
, Issue.1
, pp. E10-E13
-
-
Knop, F.K.1
-
31
-
-
84867886430
-
Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells
-
Kumar DP, Rajagopal S, Mahavadi S, et al. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun. 2012;427(3):600-605.
-
(2012)
Biochem Biophys Res Commun
, vol.427
, Issue.3
, pp. 600-605
-
-
Kumar, D.P.1
Rajagopal, S.2
Mahavadi, S.3
-
32
-
-
84895520482
-
The bile acid TGR5 membrane receptor: from basic research to clinical application
-
Duboc H, Tache Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis. 2014;46(4):302-312.
-
(2014)
Dig Liver Dis
, vol.46
, Issue.4
, pp. 302-312
-
-
Duboc, H.1
Tache, Y.2
Hofmann, A.F.3
-
33
-
-
84958214334
-
The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells
-
Vettorazzi JF, Ribeiro RA, Borck PC, et al. The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells. Metabolism. 2016;65(3):54-63.
-
(2016)
Metabolism
, vol.65
, Issue.3
, pp. 54-63
-
-
Vettorazzi, J.F.1
Ribeiro, R.A.2
Borck, P.C.3
-
34
-
-
84969794018
-
Cholecystokinin-induced gallbladder emptying and metformin elicit additive glucagon-like peptide-1 responses
-
Rohde U, Sonne DP, Christensen M, et al. Cholecystokinin-induced gallbladder emptying and metformin elicit additive glucagon-like peptide-1 responses. J Clin Endocrinol Metab. 2016;101(5):2076-2083.
-
(2016)
J Clin Endocrinol Metab
, vol.101
, Issue.5
, pp. 2076-2083
-
-
Rohde, U.1
Sonne, D.P.2
Christensen, M.3
-
35
-
-
31444454037
-
Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation
-
Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484-489.
-
(2006)
Nature
, vol.439
, Issue.7075
, pp. 484-489
-
-
Watanabe, M.1
Houten, S.M.2
Mataki, C.3
-
36
-
-
58249110568
-
Role of bile acids and bile acid receptors in metabolic regulation
-
Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147-191.
-
(2009)
Physiol Rev
, vol.89
, Issue.1
, pp. 147-191
-
-
Lefebvre, P.1
Cariou, B.2
Lien, F.3
-
37
-
-
83755220083
-
Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion
-
Parker HE, Wallis K, le Roux CW, et al. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. Br J Pharmacol. 2012;165(2):414-423.
-
(2012)
Br J Pharmacol
, vol.165
, Issue.2
, pp. 414-423
-
-
Parker, H.E.1
Wallis, K.2
le Roux, C.W.3
-
38
-
-
69149083245
-
TGR5-mediated bile acid sensing controls glucose homeostasis
-
Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167-177.
-
(2009)
Cell Metab
, vol.10
, Issue.3
, pp. 167-177
-
-
Thomas, C.1
Gioiello, A.2
Noriega, L.3
-
39
-
-
84874031840
-
Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice
-
Potthoff MJ, Potts A, He T, et al. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol. 2013;304(4):G371-G380.
-
(2013)
Am J Physiol
, vol.304
, Issue.4
, pp. G371-G380
-
-
Potthoff, M.J.1
Potts, A.2
He, T.3
-
40
-
-
0031847175
-
Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus
-
Scarpello JH, Hodgson E, Howlett HC. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet Med. 1998;15(8):651-656.
-
(1998)
Diabet Med
, vol.15
, Issue.8
, pp. 651-656
-
-
Scarpello, J.H.1
Hodgson, E.2
Howlett, H.C.3
-
41
-
-
84903759811
-
Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus
-
Napolitano A, Miller S, Nicholls AW, et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE. 2014;9(7):e100778.
-
(2014)
PLoS ONE
, vol.9
, Issue.7
-
-
Napolitano, A.1
Miller, S.2
Nicholls, A.W.3
-
42
-
-
0026541437
-
The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes
-
Sum CF, Webster JM, Johnson AB, et al. The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes. Diabet Med. 1992;9(1):61-65.
-
(1992)
Diabet Med
, vol.9
, Issue.1
, pp. 61-65
-
-
Sum, C.F.1
Webster, J.M.2
Johnson, A.B.3
-
43
-
-
84962094356
-
The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies
-
Buse JB, DeFronzo RA, Rosenstock J, et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care. 2016;39(2):198-205.
-
(2016)
Diabetes Care
, vol.39
, Issue.2
, pp. 198-205
-
-
Buse, J.B.1
DeFronzo, R.A.2
Rosenstock, J.3
-
44
-
-
85008192260
-
Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut
-
de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, et al. Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54-62.
-
(2017)
Diabetes Care
, vol.40
, Issue.1
, pp. 54-62
-
-
de la Cuesta-Zuluaga, J.1
Mueller, N.T.2
Corrales-Agudelo, V.3
-
45
-
-
0017653672
-
Alteration of bile acid metabolism and vitamin-B12-absorption in diabetics on biguanides
-
Caspary WF, Zavada I, Reimold W, et al. Alteration of bile acid metabolism and vitamin-B12-absorption in diabetics on biguanides. Diabetologia. 1977;13(3):187-193.
-
(1977)
Diabetologia
, vol.13
, Issue.3
, pp. 187-193
-
-
Caspary, W.F.1
Zavada, I.2
Reimold, W.3
-
46
-
-
0036847645
-
Effects of metformin on bile salt transport by monolayers of human intestinal Caco-2 cells
-
Carter D, Howlett HC, Wiernsperger NF, et al. Effects of metformin on bile salt transport by monolayers of human intestinal Caco-2 cells. Diabetes Obes Metab. 2002;4(6):424-427.
-
(2002)
Diabetes Obes Metab
, vol.4
, Issue.6
, pp. 424-427
-
-
Carter, D.1
Howlett, H.C.2
Wiernsperger, N.F.3
-
47
-
-
85027844463
-
-
Gallbladder emptying and single-dose metformin elicit robust and additive glucagon-like peptide-1 responses II., September 15-19, Vienna, Austria
-
Rohde U, Hansen M, Brønden A, et al. Gallbladder emptying and single-dose metformin elicit robust and additive glucagon-like peptide-1 responses II. EASD, Abstract #532; 2014; September 15-19, Vienna, Austria.
-
(2014)
EASD, Abstract #532
-
-
Rohde, U.1
Hansen, M.2
Brønden, A.3
-
48
-
-
84879570980
-
Discovery of a highly potent, nonabsorbable apical sodium-dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes
-
Wu Y, Aquino CJ, Cowan DJ, et al. Discovery of a highly potent, nonabsorbable apical sodium-dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes. J Med Chem. 2013;56(12):5094-5114.
-
(2013)
J Med Chem
, vol.56
, Issue.12
, pp. 5094-5114
-
-
Wu, Y.1
Aquino, C.J.2
Cowan, D.J.3
-
49
-
-
83455243025
-
Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes
-
Chen L, Yao X, Young A, et al. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes. Am J Physiol. 2012;302(1):E68-E76.
-
(2012)
Am J Physiol
, vol.302
, Issue.1
, pp. E68-E76
-
-
Chen, L.1
Yao, X.2
Young, A.3
-
50
-
-
79958173090
-
Randomised clinical trial: the ileal bile acid transporter inhibitor A3309 vs. placebo in patients with chronic idiopathic constipation – a double-blind study
-
Simren M, Bajor A, Gillberg PG, et al. Randomised clinical trial: the ileal bile acid transporter inhibitor A3309 vs. placebo in patients with chronic idiopathic constipation – a double-blind study. Aliment Pharmacol Ther. 2011;34(1):41-50.
-
(2011)
Aliment Pharmacol Ther
, vol.34
, Issue.1
, pp. 41-50
-
-
Simren, M.1
Bajor, A.2
Gillberg, P.G.3
-
51
-
-
84937706274
-
Specific inhibition of bile acid transport alters plasma lipids and GLP-1
-
Rudling M, Camilleri M, Graffner H, et al. Specific inhibition of bile acid transport alters plasma lipids and GLP-1. BMC Cardiovasc Disord. 2015;15:75.
-
(2015)
BMC Cardiovasc Disord
, vol.15
, pp. 75
-
-
Rudling, M.1
Camilleri, M.2
Graffner, H.3
-
52
-
-
66349134159
-
Fifty years of advances in bile acid synthesis and metabolism
-
Russell DW. Fifty years of advances in bile acid synthesis and metabolism. J Lipid Res. 2009;50(suppl):S120-S125.
-
(2009)
J Lipid Res
, vol.50
, pp. S120-S125
-
-
Russell, D.W.1
-
53
-
-
84899482356
-
Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization
-
Prawitt J, Caron S, Staels B. Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization. Trends Endocrinol Metab. 2014;25(5):235-244.
-
(2014)
Trends Endocrinol Metab
, vol.25
, Issue.5
, pp. 235-244
-
-
Prawitt, J.1
Caron, S.2
Staels, B.3
-
54
-
-
54049103635
-
Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects
-
Bays HE, Goldberg RB, Truitt KE, et al. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch Intern Med. 2008;168(18):1975-1983.
-
(2008)
Arch Intern Med
, vol.168
, Issue.18
, pp. 1975-1983
-
-
Bays, H.E.1
Goldberg, R.B.2
Truitt, K.E.3
-
55
-
-
84856701167
-
Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study
-
Beysen C, Murphy EJ, Deines K, et al. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia. 2012;55(2):432-442.
-
(2012)
Diabetologia
, vol.55
, Issue.2
, pp. 432-442
-
-
Beysen, C.1
Murphy, E.J.2
Deines, K.3
-
56
-
-
84885022539
-
Effect of colesevelam and niacin on low-density lipoprotein cholesterol and glycemic control in subjects with dyslipidemia and impaired fasting glucose
-
Davidson MH, Rooney M, Pollock E, et al. Effect of colesevelam and niacin on low-density lipoprotein cholesterol and glycemic control in subjects with dyslipidemia and impaired fasting glucose. J Clin Lipidol. 2013;7(5):423-432.
-
(2013)
J Clin Lipidol
, vol.7
, Issue.5
, pp. 423-432
-
-
Davidson, M.H.1
Rooney, M.2
Pollock, E.3
-
57
-
-
49649095014
-
Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy
-
Fonseca VA, Rosenstock J, Wang AC, et al. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care. 2008;31(8):1479-1484.
-
(2008)
Diabetes Care
, vol.31
, Issue.8
, pp. 1479-1484
-
-
Fonseca, V.A.1
Rosenstock, J.2
Wang, A.C.3
-
58
-
-
0028575639
-
Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial
-
Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann Intern Med. 1994;121(6):416-422.
-
(1994)
Ann Intern Med
, vol.121
, Issue.6
, pp. 416-422
-
-
Garg, A.1
Grundy, S.M.2
-
59
-
-
49449087092
-
Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy
-
Goldberg RB, Fonseca VA, Truitt KE, et al. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med. 2008;168(14):1531-1540.
-
(2008)
Arch Intern Med
, vol.168
, Issue.14
, pp. 1531-1540
-
-
Goldberg, R.B.1
Fonseca, V.A.2
Truitt, K.E.3
-
60
-
-
73949102364
-
Long-term safety and tolerability of colesevelam HCl in subjects with type 2 diabetes
-
Goldfine AB, Fonseca VA, Jones MR, et al. Long-term safety and tolerability of colesevelam HCl in subjects with type 2 diabetes. Horm Metab Res. 2010;42(1):23-30.
-
(2010)
Horm Metab Res
, vol.42
, Issue.1
, pp. 23-30
-
-
Goldfine, A.B.1
Fonseca, V.A.2
Jones, M.R.3
-
61
-
-
78650224090
-
Colesevelam hydrochloride to treat hypercholesterolemia and improve glycemia in prediabetes: a randomized, prospective study
-
Handelsman Y, Goldberg RB, Garvey WT, et al. Colesevelam hydrochloride to treat hypercholesterolemia and improve glycemia in prediabetes: a randomized, prospective study. Endocr Pract. 2010;16(4):617-628.
-
(2010)
Endocr Pract
, vol.16
, Issue.4
, pp. 617-628
-
-
Handelsman, Y.1
Goldberg, R.B.2
Garvey, W.T.3
-
62
-
-
83655161342
-
Effects of colesevelam on glucose absorption and hepatic/peripheral insulin sensitivity in patients with type 2 diabetes mellitus
-
Henry RR, Aroda VR, Mudaliar S, et al. Effects of colesevelam on glucose absorption and hepatic/peripheral insulin sensitivity in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2012;14(1):40-46.
-
(2012)
Diabetes Obes Metab
, vol.14
, Issue.1
, pp. 40-46
-
-
Henry, R.R.1
Aroda, V.R.2
Mudaliar, S.3
-
63
-
-
84871672045
-
Initial combination therapy with metformin plus colesevelam in drug-naive Hispanic patients with early type 2 diabetes
-
Rosenstock J, Hernandez-Triana E, Handelsman Y, et al. Initial combination therapy with metformin plus colesevelam in drug-naive Hispanic patients with early type 2 diabetes. Postgrad Med. 2012;124(4):7-13.
-
(2012)
Postgrad Med
, vol.124
, Issue.4
, pp. 7-13
-
-
Rosenstock, J.1
Hernandez-Triana, E.2
Handelsman, Y.3
-
64
-
-
77950620903
-
The effect of colesevelam hydrochloride on insulin sensitivity and secretion in patients with type 2 diabetes: a pilot study
-
Schwartz SL, Lai YL, Xu J, et al. The effect of colesevelam hydrochloride on insulin sensitivity and secretion in patients with type 2 diabetes: a pilot study. Metab Syndr Relat Disord. 2010;8(2):179-188.
-
(2010)
Metab Syndr Relat Disord
, vol.8
, Issue.2
, pp. 179-188
-
-
Schwartz, S.L.1
Lai, Y.L.2
Xu, J.3
-
65
-
-
84875463321
-
The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes
-
Smushkin G, Sathananthan M, Piccinini F, et al. The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes. Diabetes. 2013;62(4):1094-1101.
-
(2013)
Diabetes
, vol.62
, Issue.4
, pp. 1094-1101
-
-
Smushkin, G.1
Sathananthan, M.2
Piccinini, F.3
-
66
-
-
80053954040
-
Effect of colesevelam hydrochloride on glycemia and insulin sensitivity in men with the metabolic syndrome
-
Vega GL, Dunn FL, Grundy SM. Effect of colesevelam hydrochloride on glycemia and insulin sensitivity in men with the metabolic syndrome. Am J Cardiol. 2011;108(8):1129-1135.
-
(2011)
Am J Cardiol
, vol.108
, Issue.8
, pp. 1129-1135
-
-
Vega, G.L.1
Dunn, F.L.2
Grundy, S.M.3
-
67
-
-
33947610582
-
Effect of colestimide therapy for glycemic control in type 2 diabetes mellitus with hypercholesterolemia
-
Yamakawa T, Takano T, Utsunomiya H, et al. Effect of colestimide therapy for glycemic control in type 2 diabetes mellitus with hypercholesterolemia. Endocr J. 2007;54(1):53-58.
-
(2007)
Endocr J
, vol.54
, Issue.1
, pp. 53-58
-
-
Yamakawa, T.1
Takano, T.2
Utsunomiya, H.3
-
68
-
-
33947120281
-
Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes
-
Zieve FJ, Kalin MF, Schwartz SL, et al. Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther. 2007;29(1):74-83.
-
(2007)
Clin Ther
, vol.29
, Issue.1
, pp. 74-83
-
-
Zieve, F.J.1
Kalin, M.F.2
Schwartz, S.L.3
-
69
-
-
85013380231
-
Bile acid sequestrants for glycemic control in patients with type 2 diabetes: a systematic review with meta-analysis of randomized controlled trials
-
Hansen M, Sonne DP, Mikkelsen KH, et al. Bile acid sequestrants for glycemic control in patients with type 2 diabetes: a systematic review with meta-analysis of randomized controlled trials. J Diabetes Complications. 2017, doi: 10.1016/j.jdiacomp.2017.01.011.
-
(2017)
J Diabetes Complications
-
-
Hansen, M.1
Sonne, D.P.2
Mikkelsen, K.H.3
-
70
-
-
84982074515
-
Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2016 executive summary
-
Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2016 executive summary. Endocr Pract. 2016;22(1):84-113.
-
(2016)
Endocr Pract
, vol.22
, Issue.1
, pp. 84-113
-
-
Garber, A.J.1
Abrahamson, M.J.2
Barzilay, J.I.3
-
71
-
-
85009168575
-
Pharmacologic approaches to glycemic treatment
-
Pharmacologic approaches to glycemic treatment. Diabetes Care. 2017;40(suppl 1):S64-S74.
-
(2017)
Diabetes Care
, vol.40
, pp. S64-S74
-
-
-
72
-
-
84991780905
-
Nationwide trends in glucose-lowering drug use, Denmark, 1999–2014
-
Christensen DH, Rungby J, Thomsen RW. Nationwide trends in glucose-lowering drug use, Denmark, 1999–2014. Clin Epidemiol. 2016;8:381-387.
-
(2016)
Clin Epidemiol
, vol.8
, pp. 381-387
-
-
Christensen, D.H.1
Rungby, J.2
Thomsen, R.W.3
-
73
-
-
85019196764
-
Trends in drug utilization, glycemic control, and rates of severe hypoglycemia, 2006–2013
-
Lipska KJ, Yao X, Herrin J, et al. Trends in drug utilization, glycemic control, and rates of severe hypoglycemia, 2006–2013. Diabetes Care. 2017;40(4):468-475.
-
(2017)
Diabetes Care
, vol.40
, Issue.4
, pp. 468-475
-
-
Lipska, K.J.1
Yao, X.2
Herrin, J.3
-
74
-
-
84862087518
-
Colesevelam improves oral but not intravenous glucose tolerance by a mechanism independent of insulin sensitivity and beta-cell function
-
Marina AL, Utzschneider KM, Wright LA, et al. Colesevelam improves oral but not intravenous glucose tolerance by a mechanism independent of insulin sensitivity and beta-cell function. Diabetes Care. 2012;35(5):1119-1125.
-
(2012)
Diabetes Care
, vol.35
, Issue.5
, pp. 1119-1125
-
-
Marina, A.L.1
Utzschneider, K.M.2
Wright, L.A.3
|