메뉴 건너뛰기




Volumn 4, Issue 3, 2011, Pages 660-668

Unsupervised Hyperspectral Band Selection Using Graphics Processing Units

Author keywords

Band selection; graphics computing units (GPUs); high performance computing; hyperspectral imagery; parallel computing

Indexed keywords

BAND SELECTION; CLUSTER-BASED; COMPUTATION COMPLEXITY; COMPUTATIONAL BURDEN; COMPUTING UNITS; DATA PROCESSING AND ANALYSIS; DIMENSIONALITY REDUCTION; GRAPHICS PROCESSING UNIT; GRAPHICS PROCESSING UNITS; HIGH DIMENSIONALITY; HIGH PERFORMANCE COMPUTING; HYPERSPECTRAL; HYPERSPECTRAL IMAGERY; IMAGE PROCESSING AND ANALYSIS; IN-BAND; OBJECT INFORMATION; PARALLEL COMPUTING TECHNIQUES; PARALLEL IMPLEMENTATIONS; PIXEL SELECTION; REALTIME PROCESSING; SPATIAL SIZE; TAKE-ALL;

EID: 80052333825     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2011.2120598     Document Type: Article
Times cited : (113)

References (27)
  • 1
    • 0033224770 scopus 로고    scopus 로고
    • A joint band prioritization and band decorrelation approach to band selection for hyperspectral image classification
    • Jun.
    • C.-I. Chang, Q. Du, T.-L. Sun, and M. L. G. Althouse, “A joint band prioritization and band decorrelation approach to band selection for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2631–2641, Jun. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2631-2641
    • Chang, C.-I.1    Du, Q.2    Sun, T.-L.3    Althouse, M.L.G.4
  • 2
    • 2442551129 scopus 로고    scopus 로고
    • Visual method for spectral band selection
    • Apr.
    • A. Ifarraguerri, “Visual method for spectral band selection,” IEEE Geosci. Remote Sens. Lett., vol. 1, no. 2, pp. 101–106, Apr. 2004.
    • (2004) IEEE Geosci. Remote Sens. Lett. , vol.1 , Issue.2 , pp. 101-106
    • Ifarraguerri, A.1
  • 3
    • 18844367208 scopus 로고    scopus 로고
    • Band selection based on feature weighting for classification of hyperspectral imagery
    • Apr.
    • R. Huang and M. He, “Band selection based on feature weighting for classification of hyperspectral imagery,” IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 156–159, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett. , vol.2 , Issue.2 , pp. 156-159
    • Huang, R.1    He, M.2
  • 5
    • 4143064738 scopus 로고    scopus 로고
    • Methodology for hyperspectral band selection
    • P. Bajcsy and P. Groves, “Methodology for hyperspectral band selection,” Photogramm. Eng. Remote Sens., vol. 70, no. 7, pp. 793–802, 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.7 , pp. 793-802
    • Bajcsy, P.1    Groves, P.2
  • 6
    • 3843151477 scopus 로고    scopus 로고
    • Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries
    • Jul.
    • N. Keshava, “Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1552–1565, Jul. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.7 , pp. 1552-1565
    • Keshava, N.1
  • 7
    • 0027788411 scopus 로고
    • Selection of optimum bands from TM scenes through mutual information analysis
    • C. Conese and F. Maselli, “Selection of optimum bands from TM scenes through mutual information analysis,” ISPRS J. Photogramm. Remote Sens., vol. 48, no. 3, pp. 2–11, 1993.
    • (1993) ISPRS J. Photogramm. Remote Sens. , vol.48 , Issue.3 , pp. 2-11
    • Conese, C.1    Maselli, F.2
  • 8
    • 0036917442 scopus 로고    scopus 로고
    • Information theory based band selection and utility evaluation for reflective spectray systems
    • S. S. Shen and E. M. Bassett, “Information theory based band selection and utility evaluation for reflective spectray systems,” in Proc. SPIE, 2002, vol. 4725.
    • (2002) Proc. SPIE , vol.4725
    • Shen, S.S.1    Bassett, E.M.2
  • 9
    • 33846570487 scopus 로고    scopus 로고
    • A novel geometry-based feature-selection technique for hyperspectral imagery
    • Jan.
    • L. Wang, X. Jia, and Y. Zhang, “A novel geometry-based feature-selection technique for hyperspectral imagery,” IEEE Geosci. Remote Sens. Lett., vol. 4, no. 1, pp. 171–175, Jan. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.1 , pp. 171-175
    • Wang, L.1    Jia, X.2    Zhang, Y.3
  • 10
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Oct.
    • Q. Du and H. Yang, “Similarity-based unsupervised band selection for hyperspectral image analysis,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 564–568, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 11
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyper-spectral imagery
    • Mar.
    • D. C. Heinz and C. I. Chang, “Fully constrained least squares linear spectral mixture analysis method for material quantification in hyper-spectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529–545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.I.2
  • 12
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data,” in Proc. SPIE, 1999, vol. 3753, pp. 266–275.
    • (1999) Proc. SPIE , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 13
    • 85032752306 scopus 로고    scopus 로고
    • Signal processing and general-purpose computing on GPUs
    • May
    • M. D. McCool, “Signal processing and general-purpose computing on GPUs,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 109–114, May 2007.
    • (2007) IEEE Signal Process. Mag. , vol.24 , Issue.3 , pp. 109-114
    • McCool, M.D.1
  • 14
    • 80052316601 scopus 로고    scopus 로고
    • Real-time onboard hyperspectral image processing using programmable graphics hardware
    • A. Plaza and C.-I. Chang, Eds. London, U.K.: Chapman & Hall/CRC
    • J. Setoain, M. Prieto, C. Tenllado, and F. Tirado, “Real-time onboard hyperspectral image processing using programmable graphics hardware,” in High Performance Computing in Remote Sensing, A. Plaza and C.-I. Chang, Eds. London, U.K.: Chapman & Hall/CRC, 2008.
    • (2008) High Performance Computing in Remote Sensing
    • Setoain, J.1    Prieto, M.2    Tenllado, C.3    Tirado, F.4
  • 15
    • 34547206554 scopus 로고    scopus 로고
    • Parallel morphological endmember extraction using commodity graphics hardware
    • J. Setoain, M. Prieto, C. Tenllado, A. Plaza, and F. Tirado, “Parallel morphological endmember extraction using commodity graphics hardware,” IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 441–445, 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.3 , pp. 441-445
    • Setoain, J.1    Prieto, M.2    Tenllado, C.3    Plaza, A.4    Tirado, F.5
  • 16
    • 77953509191 scopus 로고    scopus 로고
    • Clusters versus GPUs for parallel target and anomaly detection in hyperspectral images
    • Jul.
    • A. Paz and A. Plaza, “Clusters versus GPUs for parallel target and anomaly detection in hyperspectral images,” EURASIP J. Adv. Signal Process., vol. 2010, p. 915639, Jul. 2010.
    • (2010) EURASIP J. Adv. Signal Process. , vol.2010 , pp. 915639
    • Paz, A.1    Plaza, A.2
  • 17
    • 33750820859 scopus 로고    scopus 로고
    • Impact of initialization on design of end-member extraction algorithm
    • Nov.
    • A. Plaza and C.-I. Chang, “Impact of initialization on design of end-member extraction algorithm,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3397–3407, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3397-3407
    • Plaza, A.1    Chang, C.-I.2
  • 19
  • 20
    • 78650906691 scopus 로고    scopus 로고
    • Parallel implementation of the N-FINDR endmember extraction algorithm on commodity graphics processing units
    • S. Sanchez, G. Martin, and A. Plaza, “Parallel implementation of the N-FINDR endmember extraction algorithm on commodity graphics processing units,” in Proc. IEEE Int. Geoscience and Remote Sensing Symp., 2010, pp. 955–958.
    • (2010) Proc. IEEE Int. Geoscience and Remote Sensing Symp. , pp. 955-958
    • Sanchez, S.1    Martin, G.2    Plaza, A.3
  • 21
    • 77954616982 scopus 로고    scopus 로고
    • Near real-time endmember extraction from remotely sensed hyperspectral data using NVidia GPUs
    • S. Sanchez, G. Martin, A. Paz, A. Plaza, and J. Plaza, “Near real-time endmember extraction from remotely sensed hyperspectral data using NVidia GPUs,” in Proc. SPIE, 2010, vol. 7724.
    • (2010) Proc. SPIE , vol.7724
    • Sanchez, S.1    Martin, G.2    Paz, A.3    Plaza, A.4    Plaza, J.5
  • 22
    • 70350139696 scopus 로고    scopus 로고
    • Comparative analysis of different implementations of a parallel algorithm for automatic target detection and classification of hyperspectral images
    • A. Paz, A. Plaza, and J. Plaza, “Comparative analysis of different implementations of a parallel algorithm for automatic target detection and classification of hyperspectral images,” in Proc. SPIE, 2009, vol. 7455.
    • (2009) Proc. SPIE , vol.7455
    • Paz, A.1    Plaza, A.2    Plaza, J.3
  • 23
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C.-I. Chang and Q. Du, “Estimation of number of spectrally distinct signal sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608–619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 24
    • 85008054785 scopus 로고    scopus 로고
    • [Online]. Available: http://developer.download.nvidia.com/compute/cuda/2_3/docs/CUBLAS_Library_2.3.pdf
    • Nvidia. [Online]. Available: http://developer.download.nvidia.com/compute/cuda/2_3/docs/CUBLAS_Library_2.3.pdf
  • 26
    • 77950955497 scopus 로고    scopus 로고
    • Unsupervised hyperspectral band selection using parallel processing
    • Cape Town, South Africa, Jul.
    • H. Yang and Q. Du, “Unsupervised hyperspectral band selection using parallel processing,” in Proc. IEEE Geoscience and Remote Sensing Symp., Cape Town, South Africa, Jul. 2009, vol. 5, pp. 80–83.
    • (2009) Proc. IEEE Geoscience and Remote Sensing Symp. , vol.5 , pp. 80-83
    • Yang, H.1    Du, Q.2
  • 27
    • 0034818997 scopus 로고    scopus 로고
    • Linear constrained distance-based discriminant analysis for hyperspectral image classification
    • Feb.
    • Q. Du and C.-I. Chang, “Linear constrained distance-based discriminant analysis for hyperspectral image classification,” Pattern Recognition, vol. 34, no. 2, pp. 361–373, Feb. 2001.
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 361-373
    • Du, Q.1    Chang, C.-I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.