메뉴 건너뛰기




Volumn 7, Issue 6, 2014, Pages 2224-2236

(Semi-) Supervised probabilistic principal component analysis for hyperspectral remote sensing image classification

Author keywords

Classification; dimensionality reduction; feature extraction; hyperspectral remote sensing; semi supervised

Indexed keywords

CLASSIFICATION (OF INFORMATION); EXTRACTION; FEATURE EXTRACTION; IMAGE ANALYSIS; IMAGE CLASSIFICATION; REMOTE SENSING; SPECTROSCOPY;

EID: 84905920772     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2279693     Document Type: Article
Times cited : (77)

References (40)
  • 1
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • J. C. Harsanyi and C. I Chang, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.I.2
  • 3
    • 84861725237 scopus 로고    scopus 로고
    • A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification
    • I. Dopido, A. Villa, A. Plaza, and P. Gamba, "A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 421-435, 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 421-435
    • Dopido, I.1    Villa, A.2    Plaza, A.3    Gamba, P.4
  • 4
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 55-63, 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 6
    • 84861757634 scopus 로고    scopus 로고
    • Classification in high-dimensional feature spaces assessment using SVM, IVM and RVM with focus on simulated Enmap data
    • A. C. Braun, U. Weidner, and S. Hinz, "Classification in high-dimensional feature spaces assessment using SVM, IVM and RVM with focus on simulated Enmap data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 436-443, 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 436-443
    • Braun, A.C.1    Weidner, U.2    Hinz, S.3
  • 7
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • M. P. and
    • M. P. and G. M. Foody, "Feature selection for classification of hyperspectral data by SVM," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297-2307, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Foody, G.M.1
  • 8
    • 67651160364 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral data via spectral feature extraction
    • B. Mojaradi, H. Abrishami-Moghaddam, M. Zoej, and R. Duin, "Dimensionality reduction of hyperspectral data via spectral feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2091-2105, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2091-2105
    • Mojaradi, B.1    Abrishami-Moghaddam, H.2    Zoej, M.3    Duin, R.4
  • 9
    • 14644435059 scopus 로고    scopus 로고
    • Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
    • DOI 10.1109/TGRS.2004.841417
    • A. Plaza, P. Martinez, J. Plaza, and R. Perez, "Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 466-479, 2005. (Pubitemid 40320269)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 466-479
    • Plaza, A.1    Martinez, P.2    Plaza, J.3    Perez, R.4
  • 13
    • 0023854011 scopus 로고
    • Transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • DOI 10.1109/36.3001
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, 1988. (Pubitemid 18596008)
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green Andrew, A.1    Berman Mark2    Switzer Paul3    Craig Maurice, D.4
  • 14
    • 33846273412 scopus 로고    scopus 로고
    • Unsupervised real-time constrained linear discriminant analysis to hyperspectral image classification
    • DOI 10.1016/j.patcog.2006.08.006, PII S0031320306003591
    • Q. Du, "Unsupervised real-time constrained linear discriminant analysis to hyperspectral image classification," Pattern Recognition, vol. 40, no. 5, pp. 1510-1519, 2007. (Pubitemid 46123379)
    • (2007) Pattern Recognition , vol.40 , Issue.5 , pp. 1510-1519
    • Du, Q.1
  • 15
    • 66749175769 scopus 로고    scopus 로고
    • Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas," EURASIP J. Advances in Signal Processing, vol. 2009, no. 2, pp. 1-15.
    • (2009) EURASIP J. Advances in Signal Processing , vol.2 , pp. 1-15
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 16
    • 84877926149 scopus 로고    scopus 로고
    • Neighborhood preserving orthogonal PNMF feature extraction for hyperspectral image classification
    • J.Wen, Z. Tian, X. Liu, and W. Lin, "Neighborhood preserving orthogonal PNMF feature extraction for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 759-768, 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.2 , pp. 759-768
    • Wen, J.1    Tian, Z.2    Liu, X.3    Lin, W.4
  • 17
    • 0242709857 scopus 로고    scopus 로고
    • Why principal component analysis is not an appropriate feature extraction method for hyperspectral data
    • A. Cheriyadat and L. M. Bruce, "Why principal component analysis is not an appropriate feature extraction method for hyperspectral data," in Proc. IEEE IGARSS, 2003, pp. 3420-3422.
    • (2003) Proc. IEEE IGARSS , pp. 3420-3422
    • Cheriyadat, A.1    Bruce, L.M.2
  • 18
    • 44649132677 scopus 로고    scopus 로고
    • A unified framework for semi-supervised dimensionality reduction
    • Y. Song, F. Nie, C. Zhang, and S. Xiang, "A unified framework for semi-supervised dimensionality reduction," Pattern Recognition, vol. 41, no. 9, pp. 2789-2799, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.9 , pp. 2789-2799
    • Song, Y.1    Nie, F.2    Zhang, C.3    Xiang, S.4
  • 19
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 20
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric weighted feature extraction for classification
    • B.-C. Kuo and D. A. Landgrebe, "Nonparametric weighted feature extraction for classification," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 5, pp. 1096-1105, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.5 , pp. 1096-1105
    • Kuo, B.-C.1    Landgrebe, D.A.2
  • 21
    • 63149143190 scopus 로고    scopus 로고
    • Kernel nonparametric weighted feature extraction for hyperspectral image classification
    • B.-C. Kuo, C.-H. Li, and J.-M. Yang, "Kernel nonparametric weighted feature extraction for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1139-1155, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.4 , pp. 1139-1155
    • Kuo, B.-C.1    Li, C.-H.2    Yang, J.-M.3
  • 22
    • 77953705810 scopus 로고    scopus 로고
    • Flexiblemanifold embedding: A framework for semi-supervised and unsupervised dimension reduction
    • F. P. Nie, D. Xu, I.W. Tsang, and C. Zhang, "Flexiblemanifold embedding: A framework for semi-supervised and unsupervised dimension reduction," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1921-1932, 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1921-1932
    • Nie, F.P.1    Xu, D.2    Tsang, I.W.3    Zhang, C.4
  • 24
    • 77952423823 scopus 로고    scopus 로고
    • Semi-supervised local Fisher discriminant analysis for dimensionality reduction
    • M. Sugiyama, T. Id, S. Nakajima, and J. Sese, "Semi-supervised local Fisher discriminant analysis for dimensionality reduction," Machine Learning, vol. 78, pp. 35-61, 2010.
    • (2010) Machine Learning , vol.78 , pp. 35-61
    • Sugiyama, M.1    Id, T.2    Nakajima, S.3    Sese, J.4
  • 26
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Scholkopf, A. J. Smola, and M. K. R, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Computation, vol. 10, no. 5, pp. 1299-1319, 1998. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 27
    • 8344222887 scopus 로고    scopus 로고
    • Exploiting spectral and spatial information in hyperspectral urban data with high resolution
    • F. Dell'Acqua, P. Gamba, A. Ferari, J. A. Palmason, B. J. A, and K. Arnason, "Exploiting spectral and spatial information in hyperspectral urban data with high resolution," IEEE Geosci. Remote Sens. Lett., vol. 1, no. 4, pp. 322-326, 2004.
    • (2004) IEEE Geosci. Remote Sens. Lett. , vol.1 , Issue.4 , pp. 322-326
    • Dell'Acqua, F.1    Gamba, P.2    Ferari, A.3    Palmason, J.A.4    Arnason, K.5
  • 28
    • 0030855587 scopus 로고    scopus 로고
    • Decision boundary feature extraction for neural networks
    • PII S1045922797002361
    • C. Lee and D. A. Landgrebe, "Decision boundary feature extraction for neural networks," IEEE Geosci. Remote Sens. Lett., vol. 38, no. 1, pp. 75-83, 1997. (Pubitemid 127767782)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.1 , pp. 75-83
    • Lee, C.1    Landgrebe, D.A.2
  • 29
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
    • M. Sugiyama, "Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis," J. Machine Learning Research, vol. 27, no. 8, pp. 1021-1064, 2007.
    • (2007) J. Machine Learning Research , vol.27 , Issue.8 , pp. 1021-1064
    • Sugiyama, M.1
  • 30
    • 0036875217 scopus 로고    scopus 로고
    • A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction
    • B. C. Kuo and D. A. Landgrebe, "A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2486-2494, 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.11 , pp. 2486-2494
    • Kuo, B.C.1    Landgrebe, D.A.2
  • 31
    • 84898929664 scopus 로고    scopus 로고
    • EM algorithms for PCA and SPCA
    • Cambridge, MA, USA: MIT Press
    • S. Roweis, "EM algorithms for PCA and SPCA," in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 1998, pp. 626-632.
    • (1998) Advances in Neural Information Processing Systems , pp. 626-632
    • Roweis, S.1
  • 32
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • M. E. Tipping and C. M. Bishop, "Probabilistic principal component analysis," BMC Bioinformatics, vol. 61, no. 3, pp. 611-622, 1999.
    • (1999) BMC Bioinformatics , vol.61 , Issue.3 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 33
    • 0032633354 scopus 로고    scopus 로고
    • Covariance estimation with limited training samples
    • S. Tadjudin and D. A. Landgrebe, "Covariance estimation with limited training samples," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 4, pp. 2113-2118, 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.4 , pp. 2113-2118
    • Tadjudin, S.1    Landgrebe, D.A.2
  • 35
    • 84871993453 scopus 로고    scopus 로고
    • Semisupervised local discriminant analysis for feature extraction in hyperspectral images
    • W. Liao, A. Pizurica, P. Scheunders, W. Philips, and Y. Pi, "Semisupervised local discriminant analysis for feature extraction in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 184-198, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 184-198
    • Liao, W.1    Pizurica, A.2    Scheunders, P.3    Philips, W.4    Pi, Y.5
  • 36
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognition, vol. 43, no. 7, pp. 2367-2379, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 37
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral- spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 38
    • 70350153353 scopus 로고    scopus 로고
    • An adaptivemean-shift analysis approach for object extraction and classification from urban hyperspectral imagery
    • X. Huang and L. Zhang, "An adaptivemean-shift analysis approach for object extraction and classification from urban hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 12, pp. 4173-4185, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.12 , pp. 4173-4185
    • Huang, X.1    Zhang, L.2
  • 39
    • 70449433268 scopus 로고    scopus 로고
    • A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS image over Pavia city, northern of Italy
    • X. Huang and L. Zhang, "A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS image over Pavia city, northern of Italy," Int. J. Remote Sens., vol. 30, no. 12, pp. 3205-3221, 2009.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.12 , pp. 3205-3221
    • Huang, X.1    Zhang, L.2
  • 40
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, semantic features for the classification of high resolution remotely sensed imagery
    • X. Huang and L. Zhang, "An SVM ensemble approach combining spectral, structural, semantic features for the classification of high resolution remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 257-272, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 257-272
    • Huang, X.1    Zhang, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.