메뉴 건너뛰기




Volumn 6, Issue 3, 2013, Pages 1688-1697

Locality preserving genetic algorithms for spatial-spectral hyperspectral image classification

Author keywords

Gaussian mixture model; genetic algorithm; hyperspectral imagery; local Fisher's ratio

Indexed keywords

DIMENSIONALITY REDUCTION ALGORITHMS; GAUSSIAN MIXTURE MODEL; GAUSSIAN MIXTURE MODEL CLASSIFIERS; HYPER-SPECTRAL IMAGERIES; HYPERSPECTRAL IMAGE CLASSIFICATION; LOCAL FISHER'S RATIO; PATTERN RECOGNITION TECHNIQUES; REMOTE SENSING TECHNOLOGY;

EID: 84880282493     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2257696     Document Type: Article
Times cited : (42)

References (25)
  • 1
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMS and mor phological profiles
    • Nov.
    • M. Fauvel, J. Benediktsson, J. Chanussot, and J. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMS and mor phological profiles, " IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.2    Chanussot, J.3    Sveinsson, J.4
  • 2
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Y. Tarabalka, J. Benediktsson, and J. Chanussot, "Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.2    Chanussot, J.3
  • 4
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • Nov.
    • P. Pudil, J. NovoviEova, and J. Kittler, "Floating search methods in feature selection, " Pattern Recognition Lett., vol. 15, no. 11, pp. 1119-1125, Nov. 1994.
    • (1994) Pattern Recognition Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovieova, J.2    Kittler, J.3
  • 7
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Mar.
    • J. Yang and V. Honavar, "Feature subset selection using a genetic algorithm, " IEEE Intelligent Syst., vol. 13, no. 2, pp. 44-49, Mar. 1998.
    • (1998) IEEE Intelligent Syst. , vol.13 , Issue.2 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 8
    • 1542285046 scopus 로고    scopus 로고
    • An application of genetic algorithms on band selection for hyperspectral image classification
    • J. Ma, Z. Zheng, Q. Tong, and L. Zheng, "An application of genetic algorithms on band selection for hyperspectral image classification, " in Proc. IEEE Int. Conf. Machine Learning and Cybernetics, 2003, vol. 5, pp. 2810-2813.
    • (2003) Proc. IEEE Int. Conf. Machine Learning and Cybernetics , vol.5 , pp. 2810-2813
    • Ma, J.1    Zheng, Z.2    Tong, Q.3    Zheng, L.4
  • 9
    • 78049241977 scopus 로고    scopus 로고
    • Multiple-spectral-spatial classification approach for hyperspectral data
    • Nov
    • Y. Tarabalka, J. Benediktsson, J. Chanussot, and J. Tilton, "Multiple-spectral-spatial classification approach for hyperspectral data, " IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4122-4132, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4122-4132
    • Tarabalka, Y.1    Benediktsson, J.2    Chanussot, J.3    Tilton, J.4
  • 11
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • Mar.
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 12
    • 10044254164 scopus 로고    scopus 로고
    • Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition
    • Feb.
    • J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, "Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition, " Pattern Recognition Lett., vol. 26, no. 2, pp. 181-191, Feb. 2005.
    • (2005) Pattern Recognition Lett. , vol.26 , Issue.2 , pp. 181-191
    • Lu, J.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 13
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • M. Sugiyama, "Dimensionaltity reduction of multimodal labeled data by local Fisher discriminant analysis, " J. Machine Learning Research, vol. 8, no. 5, pp. 1027-1061, May 2007. (Pubitemid 46798409)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 15
    • 0029273845 scopus 로고    scopus 로고
    • An investigation of the textural characteristics associated with gray level co-occurrence matrix statistical parameters
    • Mar.
    • A. Baraldi and F. Parmiggiani, "An investigation of the textural characteristics associated with gray level co-occurrence matrix statistical parameters, " IEEE Trans. Geosci. Remote Sens., vol. 33, no. 2, pp. 293-304, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.33 , Issue.2 , pp. 293-304
    • Baraldi, A.1    Parmiggiani, F.2
  • 16
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA, USA: MIT Press
    • X. He and P. Niyogi, "Locality preserving projections, " in Advances in Neural Information Processing Systems, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA, USA: MIT Press, 2004.
    • (2004) Advances in Neural Information Processing Systems
    • He, X.1    Niyogi, P.2
  • 17
    • 84872908191 scopus 로고    scopus 로고
    • Classification and reconstruction from random projections for hyperspectral imagery
    • Feb.
    • W. Li, S. Prasad, and J. E. Fowler, "Classification and reconstruction from random projections for hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2
    • Li, W.1    Prasad, S.2    Fowler, J.E.3
  • 18
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines, " IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 19
    • 0001364888 scopus 로고
    • Gaussian maximum likelihood and contextual classification algorithms for mul-ticrop classification
    • Nov.
    • S. Di Zenzo, R. Bernstein, S. D. Degloria, and H. C Kolsky, "Gaussian maximum likelihood and contextual classification algorithms for mul-ticrop classification, " IEEE Trans. Geosci. Remote Sens., vol. 25, no. 6, pp. 805-814, Nov. 1987.
    • (1987) IEEE Trans. Geosci. Remote Sens. , vol.25 , Issue.6 , pp. 805-814
    • Di Zenzo, S.1    Bernstein, R.2    Degloria, S.D.3    Kolsky, H.C.4
  • 21
    • 0036991339 scopus 로고    scopus 로고
    • A model-based mixture-supervised classification approach in hyperspectral data analysis
    • Dec.
    • M. M. Dundar and D. Landgrebe, "A model-based mixture-supervised classification approach in hyperspectral data analysis, " IEEE Trans. Geosci. Remote Sens., vol. 40, no. 12, pp. 2692-2699, Dec. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.12 , pp. 2692-2699
    • Dundar, M.M.1    Landgrebe, D.2
  • 22
    • 33750796618 scopus 로고    scopus 로고
    • Structured Gaussian components for hyperspectral image classification
    • DOI 10.1109/TGRS.2006.880626, 1717733
    • A. Berge and A. H. S. Solberg, "Structured Gaussian components for hyperspectral image classification, "IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3386-3396, Nov. 2006. (Pubitemid 44711680)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3386-3396
    • Berge, A.1    Solberg, A.H.S.2
  • 23
    • 0036469527 scopus 로고    scopus 로고
    • A greedy EM algorithm for Gaussian mixture learning
    • DOI 10.1023/A:1013844811137
    • N. Vlassis and A. Likas, "A greedy em algorithm for Gaussian mixture learning, "NeuralProcessingLett, vol. 15, no. 1, pp. 77-87, Feb. 2002. (Pubitemid 34149545)
    • (2002) Neural Processing Letters , vol.15 , Issue.1 , pp. 77-87
    • Vlassis, N.1    Likas, A.2
  • 24
    • 0000120766 scopus 로고
    • Estimation the dimension of a model
    • Mar.
    • G. Schwarz, "Estimation the dimension of a model, " The Annals of Statistics, vol. 6, no. 2, pp. 461-464, Mar. 1978.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 25
    • 15944411032 scopus 로고    scopus 로고
    • A collection of data for urban area characterization
    • 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004
    • P. Gamba, "A collection of data for urban area characterization, " in Proc. Int. Geoscience and Remote Sensing Symp., Anchorage, AK, USA, Sep. 2004, vol. 1, pp. 69-72. (Pubitemid 40438445)
    • (2004) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.1 , pp. 69-72
    • Gamba, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.