메뉴 건너뛰기




Volumn 4, Issue 3, 2011, Pages 565-578

Group and Region Based Parallel Compression Method Using Signal Subspace Projection and Band Clustering for Hyperspectral Imagery

Author keywords

Clustering signal subspace projection (CSSP); hyperspectral image compression; maximum correlation band clustering (MCBC); principal components analysis (PCA)

Indexed keywords

COMPRESSION APPROACH; COMPRESSION METHODS; COMPUTATION EFFICIENCY; COMPUTING EFFICIENCY; COMPUTING TECHNIQUES; DEGREE CORRELATION; HIGH-DIMENSIONAL IMAGES; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGE COMPRESSION; HYPERSPECTRAL IMAGERY; IMAGE DATA; IMAGE REGIONS; JPEG 2000; MAXIMUM CORRELATIONS; PARALLEL CLUSTERS; PRINCIPAL COMPONENTS ANALYSIS; REGION BASED APPROACH; REGION-BASED; SIGNAL SUB-SPACE; SIMULATION RESULT; SPECTRAL BAND;

EID: 80052317866     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2011.2162091     Document Type: Article
Times cited : (19)

References (36)
  • 1
    • 0029184860 scopus 로고
    • Practical transform coding of multispectral imagery
    • Jan.
    • J. A. Saghri, A. G. Tescher, and J. T. Reagan, “Practical transform coding of multispectral imagery,” IEEE Signal Process. Mag., vol. 12, pp. 32–43, Jan. 1995.
    • (1995) IEEE Signal Process. Mag. , vol.12 , pp. 32-43
    • Saghri, J.A.1    Tescher, A.G.2    Reagan, J.T.3
  • 2
    • 0032676466 scopus 로고    scopus 로고
    • Optimized quadtree for Karhunen-Loeve transform in multispectral image coding
    • Apr.
    • J. Lee, “Optimized quadtree for Karhunen-Loeve transform in multispectral image coding,” IEEE Trans. Image Process., vol. 8, no. 4, pp. 453–461, Apr. 1999.
    • (1999) IEEE Trans. Image Process. , vol.8 , Issue.4 , pp. 453-461
    • Lee, J.1
  • 3
    • 0031382711 scopus 로고    scopus 로고
    • Compression of multispectral images by address-predictive vector quantization
    • Dec.
    • G. R. Canta and G. Poggi, “Compression of multispectral images by address-predictive vector quantization,” Signal Process.: Image Commun., vol. 11, pp. 147–159, Dec. 1997.
    • (1997) Signal Process.: Image Commun. , vol.11 , pp. 147-159
    • Canta, G.R.1    Poggi, G.2
  • 4
    • 0032073477 scopus 로고    scopus 로고
    • Kronecker-product gain-shape vector quantization for multispectral and hyperspectral image coding
    • May
    • G. R. Canta and G. Poggi, “Kronecker-product gain-shape vector quantization for multispectral and hyperspectral image coding,” IEEE Trans. Image Process., vol. 7, pp. 668–678, May 1998.
    • (1998) IEEE Trans. Image Process. , vol.7 , pp. 668-678
    • Canta, G.R.1    Poggi, G.2
  • 5
    • 2142766775 scopus 로고    scopus 로고
    • Multispectral image compression using eigen-region-based segmentation
    • L. Chang, “Multispectral image compression using eigen-region-based segmentation,” Pattern Recognition, vol. 37, no. 6, pp. 1233–1243, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.6 , pp. 1233-1243
    • Chang, L.1
  • 6
  • 7
    • 0030173121 scopus 로고    scopus 로고
    • A new, fast, and efficient image codec based on set partitioning in hierarchical trees
    • Jun.
    • A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 3, pp. 243–350, Jun. 1996.
    • (1996) IEEE Trans. Circuits Syst. Video Technol. , vol.6 , Issue.3 , pp. 243-350
    • Said, A.1    Pearlman, W.A.2
  • 8
    • 0033906379 scopus 로고    scopus 로고
    • Compression of multispectral images by three dimensional SPIHT algorithm
    • Jan.
    • P. L. Dragotti, G. Poggi, and A. R. P. Ragozini, “Compression of multispectral images by three dimensional SPIHT algorithm,” IEEE Trans. Geosci. Remote Sens., vol. 38, pp. 416–428, Jan. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , pp. 416-428
    • Dragotti, P.L.1    Poggi, G.2    Ragozini, A.R.P.3
  • 9
    • 0010618343 scopus 로고
    • Hyperspectral image compression using 3D discrete cosine transform and entropy-constrained trellis-coded quantization
    • G. P. Abousleman, M. W. Marcellin, and B. R. Hunt, “Hyperspectral image compression using 3D discrete cosine transform and entropy-constrained trellis-coded quantization,” in Proc. SPIE Opt. Eng., 1994, pp. 136–147.
    • (1994) Proc. SPIE Opt. Eng. , pp. 136-147
    • Abousleman, G.P.1    Marcellin, M.W.2    Hunt, B.R.3
  • 10
    • 0041625899 scopus 로고    scopus 로고
    • Hyperspectral image compression using three-dimensional image coding
    • Jan.
    • X. Tang, W. A. Pearlman, and J. W. Modestino, “Hyperspectral image compression using three-dimensional image coding,” in Proc. SPIE, Jan. 2003, vol. 5022.
    • (2003) Proc. SPIE , vol.5022
    • Tang, X.1    Pearlman, W.A.2    Modestino, J.W.3
  • 11
    • 9144239988 scopus 로고    scopus 로고
    • Efficient, low-complexity image coding with a set partitioning embedded block coder
    • W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-complexity image coding with a set partitioning embedded block coder,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, pp. 1219–1235, 2004.
    • (2004) IEEE Trans. Circuits Syst. Video Technol. , vol.14 , pp. 1219-1235
    • Pearlman, W.A.1    Islam, A.2    Nagaraj, N.3    Said, A.4
  • 12
    • 0034505399 scopus 로고    scopus 로고
    • Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT)
    • Dec.
    • B.-J. Kim, Z. Xiong, and W. A. Pearlman, “Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT),” IEEE Trans. Circuits Syst. Video Technol., vol. 10, no. 8, pp. 1374–1387, Dec. 2000.
    • (2000) IEEE Trans. Circuits Syst. Video Technol. , vol.10 , Issue.8 , pp. 1374-1387
    • Kim, B.-J.1    Xiong, Z.2    Pearlman, W.A.3
  • 13
    • 0344272209 scopus 로고    scopus 로고
    • 3D set partitioning coding methods in hyperspectral image compression
    • Sep.
    • X. Tang, S. Cho, and W. A. Pearlman, “3D set partitioning coding methods in hyperspectral image compression,” in Proc. ICIP, Sep. 2003, vol. 2, pp. 239–242.
    • (2003) Proc. ICIP , vol.2 , pp. 239-242
    • Tang, X.1    Cho, S.2    Pearlman, W.A.3
  • 16
    • 31144441716 scopus 로고    scopus 로고
    • Progressive 3D coding of hyperspectral images based on JPEG 2000
    • Jan.
    • B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3D coding of hyperspectral images based on JPEG 2000,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 125–129, Jan. 2006.
    • (2006) IEEE Geosci. Remote Sens. Lett. , vol.3 , Issue.1 , pp. 125-129
    • Penna, B.1    Tillo, T.2    Magli, E.3    Olmo, G.4
  • 18
    • 34247332661 scopus 로고    scopus 로고
    • Hyperspectral image compression using JPEG2000 and principal component analysis
    • April
    • D. Qian and E. James, “Hyperspectral image compression using JPEG2000 and principal component analysis,” IEEE Geosci. Remote Sens. Lett., vol. 4, pp. 201–205, April 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , pp. 201-205
    • Qian, D.1    James, E.2
  • 19
    • 77951105703 scopus 로고    scopus 로고
    • An efficient hierarchical hyperspectral image classification using binary quatemion-moment-preserving thresholding technique
    • Jul.
    • L. Chang, Y.-L. Chang, and C.-M. Cheng, “An efficient hierarchical hyperspectral image classification using binary quatemion-moment-preserving thresholding technique,” in Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS'09), Jul. 2009, vol. 2, pp. 294–297.
    • (2009) Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS'09) , vol.2 , pp. 294-297
    • Chang, L.1    Chang, Y.-L.2    Cheng, C.-M.3
  • 20
    • 15944413394 scopus 로고    scopus 로고
    • A novel segmentation technique using eigen space projection for satellite image indexing
    • Jul.
    • L. Chang, C. M. Chen, and J. D. Chen, “A novel segmentation technique using eigen space projection for satellite image indexing,” in Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS'04), Jul. 2004, vol. 3, pp. 1573–1576.
    • (2004) Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS'04) , vol.3 , pp. 1573-1576
    • Chang, L.1    Chen, C.M.2    Chen, J.D.3
  • 21
    • 0022266946 scopus 로고
    • Moment-preserving thresholding: A new approach
    • W. H. Tsai, “Moment-preserving thresholding: A new approach,” Computer Vision, Graphics, and Image Processing, vol. 29, no. 3, pp. 377–393, 1985.
    • (1985) Computer Vision, Graphics, and Image Processing , vol.29 , Issue.3 , pp. 377-393
    • Tsai, W.H.1
  • 24
    • 4444289278 scopus 로고    scopus 로고
    • A modular eigenspace scheme for high dimensional data classification
    • Y. L. Chang and C. C. Han et al., “A modular eigenspace scheme for high dimensional data classification,” Future Generation Computer Systems, pp. 1131–1143, 2004.
    • (2004) Future Generation Computer Systems , pp. 1131-1143
    • Chang, Y.L.1    Han, C.C.2
  • 25
    • 85008054571 scopus 로고    scopus 로고
    • [Online]. Available: http://www.mathworks.com/products/distriben/
    • Matlab Distributed Computing Engine (MDCE). [Online]. Available: http://www.mathworks.com/products/distriben/
  • 26
    • 85008012067 scopus 로고    scopus 로고
    • [Online]. Available: http://www.mathworks.com/products/parallel-computing/
    • MATLAB Parallel Computing Toolbox (PCT). [Online]. Available: http://www.mathworks.com/products/parallel-computing/
  • 27
    • 70350300459 scopus 로고    scopus 로고
    • Segmented principal component analysis for parallel compression of hyperspectral imagery
    • Oct.
    • Q. Du, W. Zhu, H. Yang, and J. E. Fowler, “Segmented principal component analysis for parallel compression of hyperspectral imagery,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 713–717, Oct. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.4 , pp. 713-717
    • Du, Q.1    Zhu, W.2    Yang, H.3    Fowler, J.E.4
  • 28
    • 67651250548 scopus 로고    scopus 로고
    • Hierarchical texture-based segmentation of multiresolution remote-sensing images
    • Jul.
    • R. Gaetano, G. Scarpa, and G. Poggi, “Hierarchical texture-based segmentation of multiresolution remote-sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2129–2147, Jul. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2129-2147
    • Gaetano, R.1    Scarpa, G.2    Poggi, G.3
  • 29
    • 0442279711 scopus 로고    scopus 로고
    • Clustered DPCM for the lossless compression of hyperspectral images
    • Dec.
    • J. Mielikainen and P. Toivanen, “Clustered DPCM for the lossless compression of hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 12, pp. 2943–2946, Dec. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.12 , pp. 2943-2946
    • Mielikainen, J.1    Toivanen, P.2
  • 30
    • 47849110909 scopus 로고    scopus 로고
    • Lossless compression of hyperspectral images using a quantized index to lookup tables
    • Jul.
    • J. Mielikainen and P. Toivanen, “Lossless compression of hyperspectral images using a quantized index to lookup tables,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 474–478, Jul. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.3 , pp. 474-478
    • Mielikainen, J.1    Toivanen, P.2
  • 31
    • 33746237886 scopus 로고    scopus 로고
    • Rate distortion optimal bit allocation methods for volumetric data using JPEG 2000
    • Aug.
    • O. M. Kosheleva, B. E. Usevitch, S. D. Cabrera, and E. Vidal, Jr., “Rate distortion optimal bit allocation methods for volumetric data using JPEG 2000,” IEEE Trans. Image Process., vol. 15, no. 8, pp. 2106–2112, Aug. 2006.
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.8 , pp. 2106-2112
    • Kosheleva, O.M.1    Usevitch, B.E.2    Cabrera, S.D.3    Vidal, E.4
  • 32
    • 85032752416 scopus 로고    scopus 로고
    • A tutorial on modem lossy wavelet image compression: Foundations of JPEG2000
    • Sep.
    • B. E. Usevitch, “A tutorial on modem lossy wavelet image compression: Foundations of JPEG2000,” IEEE Signal Process. Mag., vol. 18, pp. 22–35, Sep. 2001.
    • (2001) IEEE Signal Process. Mag. , vol.18 , pp. 22-35
    • Usevitch, B.E.1
  • 33
  • 34
    • 0003853563 scopus 로고    scopus 로고
    • [Online]. Available: http://www.mathworks.com/help/toolbox/images/
    • Ra Documentation, Image Processing Toolbox User's Guide. [Online]. Available: http://www.mathworks.com/help/toolbox/images/
    • Image Processing Toolbox User's Guide
  • 36
    • 84892249589 scopus 로고    scopus 로고
    • 11 spectral/spatial hyperspectral image compression
    • New York: Springer
    • G. Motta and J. Storer, “11 spectral/spatial hyperspectral image compression,” in Hyperspectral Data Compression. New York: Springer, 2006.
    • (2006) Hyperspectral Data Compression
    • Motta, G.1    Storer, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.