메뉴 건너뛰기




Volumn 7, Issue 2, 2014, Pages 375-388

Nonlinear dimensionality reduction via the ENH-LTSA method for hyperspectral image classification

Author keywords

ENH LTSA; Hyperspectral image classification; LTSA; Nonlinear dimensionality reduction

Indexed keywords


EID: 84894515623     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2238890     Document Type: Article
Times cited : (48)

References (50)
  • 1
    • 79957511390 scopus 로고    scopus 로고
    • Detection and classification of invasive salt cedar through high spatial resolution airborne hyperspectral imagery
    • X. Miao, R. Patil, J. S. Heaton, and R. C. Tracy, "Detection and classification of invasive salt cedar through high spatial resolution airborne hyperspectral imagery," Int. J. Remote Sens., vol. 32, pp. 2131-2150, 2011.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 2131-2150
    • Miao, X.1    Patil, R.2    Heaton, J.S.3    Tracy, R.C.4
  • 2
    • 84894585473 scopus 로고    scopus 로고
    • Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery
    • G. H. Mitri and I. Z. Gitas, "Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery," Int. J. Appl. Earth Observ. Geoinform., vol. 18, pp. 1-7, 2011.
    • (2011) Int. J. Appl. Earth Observ. Geoinform. , vol.18 , pp. 1-7
    • Mitri, G.H.1    Gitas, I.Z.2
  • 3
    • 84862782421 scopus 로고    scopus 로고
    • Robust hyperspectral vision- based classification for multi-season weed mapping
    • Y. Zhang, D. C. Slaughter, and E. S. Staab, "Robust hyperspectral vision- based classification for multi-season weed mapping," ISPRS J. Photogramm. Remote Sens., vol. 69, pp. 65-73, 2012.
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.69 , pp. 65-73
    • Zhang, Y.1    Slaughter, D.C.2    Staab, E.S.3
  • 4
    • 82155171386 scopus 로고    scopus 로고
    • Identification and quantification of aquatic vegetation with hyperspectral remote sensing in western Nevada rivers, USA
    • B. S. Lee, K. C. McGwire, and C. H. Fritsen, "Identification and quantification of aquatic vegetation with hyperspectral remote sensing in western Nevada rivers, USA," Int. J. Remote Sens., vol. 32, pp. 9093-9117, 2011.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 9093-9117
    • Lee, B.S.1    McGwire, K.C.2    Fritsen, C.H.3
  • 6
    • 84864414932 scopus 로고    scopus 로고
    • Multi-and hyperspectral geologic remote sensing: A review
    • F. D. Van Der Meer et al., "Multi-and hyperspectral geologic remote sensing: A review," Int. J. Appl. Earth Observ. Geoinform., vol. 14, pp. 112-128, 2012.
    • (2012) Int. J. Appl. Earth Observ. Geoinform. , vol.14 , pp. 112-128
    • Meer Der Van, F.D.1
  • 7
    • 78049303525 scopus 로고    scopus 로고
    • Decision-level fusion of spectral reflectance and derivative information for robust hyperspectral land cover classification
    • H. R. Kalluri, S. Prasad, and L. M. Bruce, "Decision-level fusion of spectral reflectance and derivative information for robust hyperspectral land cover classification," IEEE Trans. Geosci. Remote Sens., vol. 48, pp. 4047-4058, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 4047-4058
    • Kalluri, H.R.1    Prasad, S.2    Bruce, L.M.3
  • 8
    • 82155192892 scopus 로고    scopus 로고
    • Land cover classification using CHRIS/PROBA images and multi-temporal texture
    • H. R. Kalluri, S. Prasad, and L. M. Bruce, "Land cover classification using CHRIS/PROBA images and multi-temporal texture," Int. J. Remote Sens., vol. 33, pp. 101-119, 2012.
    • (2012) Int. J. Remote Sens. , vol.33 , pp. 101-119
    • Kalluri, H.R.1    Prasad, S.2    Bruce, L.M.3
  • 9
    • 0346061723 scopus 로고    scopus 로고
    • High-dimensional data analysis: The curses and blessings of dimensionality
    • D. L. Donoho, "High-dimensional data analysis: The curses and blessings of dimensionality," AMS Math Challenges Lecture, pp. 1-32, 2000.
    • (2000) AMS Math Challenges Lecture , pp. 1-32
    • Donoho, D.L.1
  • 10
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • B. M. Shahshahani and D. A. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon," IEEE Trans. Geosci. Remote Sens., vol. 32, pp. 1087-1095, 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 12
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. B. Tenenbaum, V. Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, pp. 2319-2323, 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 13
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin and P. Niyogi, "Laplacian Eigenmaps for dimensionality reduction and data representation," Neural Computation, vol. 15, pp. 1373-1396, 2003. (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 14
    • 35048841672 scopus 로고    scopus 로고
    • Nonlinear Dimension Reduction via Local Tangent Space Alignment
    • Intelligent Data Engineering and Automated Learning
    • Z. Zhang and H. Zha, "Nonlinear dimension reduction via local tangent space alignment," Intelligent Data Eng. Automated Learning, pp. 477-481, 2003. (Pubitemid 36996128)
    • (2003) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2690 , pp. 477-481
    • Zhang, Z.1    Zha, H.2
  • 15
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, pp. 2323-2326, 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 16
    • 84860119060 scopus 로고    scopus 로고
    • Exploring nonlinearmanifold learning for classification of hyperspectral data
    • S. Prasad, Ed. et al. Berlin, Heidelberg: Springer
    • M. M. Crawford et al., "Exploring nonlinearmanifold learning for classification of hyperspectral data," in Optical Remote Sensing, S. Prasad, Ed. et al. Berlin, Heidelberg: Springer, 2011, vol. 3, pp. 207-234.
    • (2011) Optical Remote Sensing , vol.3 , pp. 207-234
    • Crawford, M.M.1
  • 17
  • 18
    • 77956317584 scopus 로고    scopus 로고
    • Generalised supervised local tangent space alignment for hyperspectral image classification
    • L. Ma, M. Crawford, and J. Tian, "Generalised supervised local tangent space alignment for hyperspectral image classification," Electron. Lett., vol. 46, pp. 497-498, 2010.
    • (2010) Electron. Lett. , vol.46 , pp. 497-498
    • Ma, L.1    Crawford, M.2    Tian, J.3
  • 19
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning-based k-nearest-neighbor for hyperspectral image classification
    • L. Ma et al., "Local manifold learning-based k-nearest-neighbor for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, pp. 4099-4109, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 4099-4109
    • Ma, L.1
  • 20
    • 80955141887 scopus 로고    scopus 로고
    • Manifold alignment for multitemporal hyperspectral image classification
    • Vancouver, Canada, Jul. 24-29
    • H. L. Yang and M. M. Crawford, "Manifold alignment for multitemporal hyperspectral image classification," in Proc. 2011 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Vancouver, Canada, Jul. 24-29, 2011, pp. 4332-4335.
    • (2011) Proc. 2011 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS) , pp. 4332-4335
    • Yang, H.L.1    Crawford, M.M.2
  • 21
    • 79959705257 scopus 로고    scopus 로고
    • Spatially adaptive classification of land cover with remote sensing data
    • G. Jun and J. Ghosh, "Spatially adaptive classification of land cover with remote sensing data," IEEE Trans. Geosci. Remote Sens., vol. 49, pp. 2662-2673, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 2662-2673
    • Jun, G.1    Ghosh, J.2
  • 22
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, pp. S110-S122, 2009.
    • (2009) Remote Sens. Environ. , vol.113
    • Plaza, A.1
  • 26
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, pp. 3804-3814, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 27
    • 84861723546 scopus 로고    scopus 로고
    • Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
    • G. Martín and A. Plaza, "Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, pp. 380-395, 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , pp. 380-395
    • Martín, G.1    Plaza, A.2
  • 28
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral- spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, pp. 2973-2987, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 32
    • 84873105448 scopus 로고    scopus 로고
    • Integrating spatial proximity with manifold learning for hyperspectral data
    • W. Kim, M. M. Crawford, and S. Lee, "Integrating spatial proximity with manifold learning for hyperspectral data," Korean J. Remote Sens., vol. 26, pp. 693-703, 2010.
    • (2010) Korean J. Remote Sens. , vol.26 , pp. 693-703
    • Kim, W.1    Crawford, M.M.2    Lee, S.3
  • 34
    • 0035789317 scopus 로고    scopus 로고
    • Random projection in dimensionality reduction: Applications to image and text data
    • San Francisco, CA, USA, Aug. 26-29
    • E. Bingham and H. Mannila, "Random projection in dimensionality reduction: Applications to image and text data," in Proc. 7th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Francisco, CA, USA, Aug. 26-29, 2001, pp. 245-250.
    • (2001) Proc. 7th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining , pp. 245-250
    • Bingham, E.1    Mannila, H.2
  • 36
    • 84255178228 scopus 로고    scopus 로고
    • Anomaly detection and reconstruction from random projections
    • J. Fowler and Q. Du, "Anomaly detection and reconstruction from random projections," IEEE Trans. Image Process., vol. 21, pp. 184-195, 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 184-195
    • Fowler, J.1    Du, Q.2
  • 37
    • 80955132773 scopus 로고    scopus 로고
    • Random-projection-based dimensionality reduction and decision fusion for hyperspectral target detection
    • Vancouver, Canada, Jul. 24-29
    • Q. Du, J. E. Fowler, and B. Ma, "Random-projection-based dimensionality reduction and decision fusion for hyperspectral target detection," in Proc. 2011 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Vancouver, Canada, Jul. 24-29, 2011, pp. 1790-1793.
    • (2011) Proc. 2011 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS) , pp. 1790-1793
    • Du, Q.1    Fowler, J.E.2    Ma, B.3
  • 39
    • 55649115527 scopus 로고    scopus 로고
    • A simple proof of the restricted isometry property for random matrices
    • R. Baraniuk,M.Davenport, R. DeVore, and M.Wakin, "A simple proof of the restricted isometry property for random matrices," Constructive Approximation, vol. 28, pp. 253-263, 2008.
    • (2008) Constructive Approximation , vol.28 , pp. 253-263
    • Baraniukm, R.1    Devore, R.2    Wakin, M.3
  • 41
    • 0030714233 scopus 로고    scopus 로고
    • Two algorithms for nearest-neighbor search in high dimensions
    • El Paso, TX, USA, May
    • J. M. Kleinberg, "Two algorithms for nearest-neighbor search in high dimensions," in Proc. 29th Annu. ACM Symp. Theory of Computing, El Paso, TX, USA, May 1997, pp. 599-608.
    • (1997) Proc. 29th Annu. ACM Symp. Theory of Computing , pp. 599-608
    • Kleinberg, J.M.1
  • 42
    • 70449440398 scopus 로고    scopus 로고
    • Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection
    • J. Chen, H. Fang, and Y. Saad, "Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection," J. Mach. Learning Res., vol. 10, pp. 1989-2012, 2009.
    • (2009) J. Mach. Learning Res. , vol.10 , pp. 1989-2012
    • Chen, J.1    Fang, H.2    Saad, Y.3
  • 43
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • D. Boley, "Principal direction divisive partitioning," Data Mining and Knowledge Discovery, vol. 2, pp. 325-344, 1998. (Pubitemid 128695482)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 325-344
    • Boley, D.1
  • 44
    • 0000094594 scopus 로고
    • An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
    • C. Lanczos, "An iteration method for the solution of the eigenvalue problem of linear differential and integral operators," J. Res. National Bureau of Standards, vol. 44, pp. 255-282, 1950.
    • (1950) J. Res. National Bureau of Standards , vol.44 , pp. 255-282
    • Lanczos, C.1
  • 45
    • 0002741413 scopus 로고
    • Large-scale sparse singular value computations
    • M. W. Berry, "Large-scale sparse singular value computations," Int. J. Supercomputer Applicat., vol. 6, pp. 13-49, 1992.
    • (1992) Int. J. Supercomputer Applicat. , vol.6 , pp. 13-49
    • Berry, M.W.1
  • 46
    • 72449140504 scopus 로고    scopus 로고
    • A randomized algorithm for principal component analysis
    • V. Rokhlin, A. Szlam, and M. Tygert, "A randomized algorithm for principal component analysis," SIAM J. Matrix Anal. Applicat., vol. 31, pp. 1100-1124, 2010.
    • (2010) SIAM J. Matrix Anal. Applicat. , vol.31 , pp. 1100-1124
    • Rokhlin, V.1    Szlam, A.2    Tygert, M.3
  • 47
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • T. Cover and P. Hart, "Nearest neighbor pattern classification, " IEEE Trans. Inf. Theory, vol. IT-13, pp. 21-27, 1967.
    • (1967) IEEE Trans. Inf. Theory , vol.13 IT , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 48
    • 0001673996 scopus 로고    scopus 로고
    • A comparison of event models for naive Bayes text classification
    • Madison, WI, USA, Jul. 26-27
    • A. McCallum and K. Nigam, "A comparison of event models for naive Bayes text classification," in AAAI-98 Workshop on Learning for Text Categorization, Madison, WI, USA, Jul. 26-27, 1998, pp. 41-48.
    • (1998) AAAI-98 Workshop on Learning for Text Categorization , pp. 41-48
    • McCallum, A.1    Nigam, K.2
  • 50
    • 33847374231 scopus 로고    scopus 로고
    • Linear local tangent space alignment and application to face recognition
    • DOI 10.1016/j.neucom.2006.11.007, PII S0925231206004577, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
    • T. Zhang, J. Yang, D. Zhao, and X. Ge, "Linear local tangent space alignment and application to face recognition," Neurocomputing, vol. 70, pp. 1547-1553, 2007. (Pubitemid 46336768)
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1547-1553
    • Zhang, T.1    Yang, J.2    Zhao, D.3    Ge, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.