-
1
-
-
0000934205
-
SMoG: de Novo design method based on simple, fast, and accurate free energy estimates.1. Methodology and supporting evidence
-
COI: 1:CAS:528:DyaK28Xms1OjtLc%3D
-
DeWitte RS, Shakhnovich EI (1996) SMoG: de Novo design method based on simple, fast, and accurate free energy estimates.1. Methodology and supporting evidence. J Am Chem Soc 118(47):11733–11744
-
(1996)
J Am Chem Soc
, vol.118
, Issue.47
, pp. 11733-11744
-
-
DeWitte, R.S.1
Shakhnovich, E.I.2
-
2
-
-
35348821202
-
Virtual screening strategies in drug discovery
-
COI: 1:CAS:528:DC%2BD2sXhtF2rsbrN
-
McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin Chem Biol 11(5):494–502. doi:10.1016/j.cbpa.2007.08.033
-
(2007)
Curr Opin Chem Biol
, vol.11
, Issue.5
, pp. 494-502
-
-
McInnes, C.1
-
3
-
-
0033576680
-
Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins
-
COI: 1:CAS:528:DyaK1MXnsFOqt7g%3D
-
Charifson PS, Corkery JJ, Murcko MA, Walters WP (1999) Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42(25):5100–5109
-
(1999)
J Med Chem
, vol.42
, Issue.25
, pp. 5100-5109
-
-
Charifson, P.S.1
Corkery, J.J.2
Murcko, M.A.3
Walters, W.P.4
-
4
-
-
0037763817
-
Comparative evaluation of 11 scoring functions for molecular docking
-
COI: 1:CAS:528:DC%2BD3sXjsVOgtr0%3D
-
Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46(12):2287–2303. doi:10.1021/jm0203783
-
(2003)
J Med Chem
, vol.46
, Issue.12
, pp. 2287-2303
-
-
Wang, R.1
Lu, Y.2
Wang, S.3
-
5
-
-
8844263008
-
Docking and scoring in virtual screening for drug discovery: methods and applications
-
COI: 1:CAS:528:DC%2BD2cXptFemtrg%3D
-
Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949. doi:10.1038/nrd1549
-
(2004)
Nat Rev Drug Discov
, vol.3
, Issue.11
, pp. 935-949
-
-
Kitchen, D.B.1
Decornez, H.2
Furr, J.R.3
Bajorath, J.4
-
6
-
-
33749260698
-
A critical assessment of docking programs and scoring functions
-
COI: 1:CAS:528:DC%2BD2MXnslOrtrY%3D
-
Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931. doi:10.1021/jm050362n
-
(2006)
J Med Chem
, vol.49
, Issue.20
, pp. 5912-5931
-
-
Warren, G.L.1
Andrews, C.W.2
Capelli, A.M.3
Clarke, B.4
LaLonde, J.5
Lambert, M.H.6
Lindvall, M.7
Nevins, N.8
Semus, S.F.9
Senger, S.10
Tedesco, G.11
Wall, I.D.12
Woolven, J.M.13
Peishoff, C.E.14
Head, M.S.15
-
7
-
-
66149103553
-
Comparative assessment of scoring functions on a diverse test set
-
COI: 1:CAS:528:DC%2BD1MXkt1aqtLg%3D
-
Cheng T, Li X, Li Y, Liu Z, Wang R (2009) Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 49(4):1079–1093. doi:10.1021/ci9000053
-
(2009)
J Chem Inf Model
, vol.49
, Issue.4
, pp. 1079-1093
-
-
Cheng, T.1
Li, X.2
Li, Y.3
Liu, Z.4
Wang, R.5
-
8
-
-
84862795414
-
-
Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14(1):133–141. 1550-7416 (Electronic) 1550-7416 (Linking)
-
Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14(1):133–141. ISSN 1550-7416 (Electronic) 1550-7416 (Linking). doi:10.1208/s12248-012-9322-0. URL http://www.ncbi.nlm.nih.gov/pubmed/22281989
-
-
-
-
9
-
-
80053330055
-
CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions
-
COI: 1:CAS:528:DC%2BC3MXhtVylsbzO
-
Smith RD, Dunbar JB, Ung PM-U, Esposito EX, Yang C-Y, Wang S, Carlson HA (2011) CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. J Chem Inf Model 51(9):2115–2131. doi:10.1021/ci200269q
-
(2011)
J Chem Inf Model
, vol.51
, Issue.9
, pp. 2115-2131
-
-
Smith, R.D.1
Dunbar, J.B.2
Ung, P.M.-U.3
Esposito, E.X.4
Yang, C.-Y.5
Wang, S.6
Carlson, H.A.7
-
10
-
-
80053297657
-
Scoring and lessons learned with the CSAR benchmark using an improved iterative knowledge-based scoring function
-
COI: 1:CAS:528:DC%2BC3MXhtV2rt7%2FJ
-
Huang S-Y, Zou X (2011) Scoring and lessons learned with the CSAR benchmark using an improved iterative knowledge-based scoring function. J Chem Inf Model 51(9):2097–2106. doi:10.1021/ci2000727
-
(2011)
J Chem Inf Model
, vol.51
, Issue.9
, pp. 2097-2106
-
-
Huang, S.-Y.1
Zou, X.2
-
11
-
-
0023936327
-
Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure
-
COI: 1:CAS:528:DyaL1cXhsVarsbk%3D
-
DesJarlais RL, Sheridan RP, Seibel GL, Dixon JS, Kuntz ID, Venkataraghavan R (1988) Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J Med Chem 31(4):722–729
-
(1988)
J Med Chem
, vol.31
, Issue.4
, pp. 722-729
-
-
DesJarlais, R.L.1
Sheridan, R.P.2
Seibel, G.L.3
Dixon, J.S.4
Kuntz, I.D.5
Venkataraghavan, R.6
-
12
-
-
77950503976
-
Virtual screening: an endless staircase?
-
COI: 1:CAS:528:DC%2BC3cXktVGjur4%3D
-
Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9(4):273–276. doi:10.1038/nrd3139
-
(2010)
Nat Rev Drug Discov
, vol.9
, Issue.4
, pp. 273-276
-
-
Schneider, G.1
-
13
-
-
80053337594
-
Combined application of cheminformatics- and physical force field-based scoring functions improves binding affinity prediction for CSAR data sets
-
COI: 1:CAS:528:DC%2BC3MXhtV2rtrfI
-
Hsieh J-H, Yin S, Liu S, Sedykh A, Dokholyan NV, Tropsha A (2011) Combined application of cheminformatics- and physical force field-based scoring functions improves binding affinity prediction for CSAR data sets. J Chem Inf Model 51(9):2027–2035. doi:10.1021/ci200146e
-
(2011)
J Chem Inf Model
, vol.51
, Issue.9
, pp. 2027-2035
-
-
Hsieh, J.-H.1
Yin, S.2
Liu, S.3
Sedykh, A.4
Dokholyan, N.V.5
Tropsha, A.6
-
14
-
-
0030599010
-
-
Matthias R, Bernd K, Thomas L, Gerhard K (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3):470–489
-
Matthias R, Bernd K, Thomas L, Gerhard K (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3):470–489. ISSN 0022-2836. URL http://www.sciencedirect.com/science/article/B6WK7-45MG2MC-5D/2/6bd203c800c04024407f7f216171b96a. doi:10.1006/jmbi.1996.0477
-
-
-
-
15
-
-
0001704085
-
SCORE: a new empirical method for estimating the binding affinity of a protein-ligand complex
-
COI: 1:CAS:528:DyaK1MXntFSiug%3D%3D
-
Wang R, Liu L, Lai L, Tang Y (1998) SCORE: a new empirical method for estimating the binding affinity of a protein-ligand complex. J Mol Model 4:379–394
-
(1998)
J Mol Model
, vol.4
, pp. 379-394
-
-
Wang, R.1
Liu, L.2
Lai, L.3
Tang, Y.4
-
16
-
-
84954459896
-
OPLS3: a force field providing broad coverage of drug-like small molecules and proteins
-
COI: 1:CAS:528:DC%2BC2MXhvVCjtbfE
-
Harder E, Damm W, Maple J, Chuanjie W, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theor Comput 12(1):281–296. doi:10.1021/acs.jctc.5b00864
-
(2016)
J Chem Theor Comput
, vol.12
, Issue.1
, pp. 281-296
-
-
Harder, E.1
Damm, W.2
Maple, J.3
Chuanjie, W.4
Reboul, M.5
Xiang, J.Y.6
Wang, L.7
Lupyan, D.8
Dahlgren, M.K.9
Knight, J.L.10
Kaus, J.W.11
Cerutti, D.S.12
Krilov, G.13
Jorgensen, W.L.14
Abel, R.15
Friesner, R.A.16
-
17
-
-
52049118327
-
MedusaScore: an accurate force field-based scoring function for virtual drug screening
-
COI: 1:CAS:528:DC%2BD1cXptlaqt7g%3D
-
Yin S, Biedermannova L, Vondrasek J, Dokholyan NV (2008) MedusaScore: an accurate force field-based scoring function for virtual drug screening. J Chem Inf Model 48(8):1656–1662. doi:10.1021/ci8001167
-
(2008)
J Chem Inf Model
, vol.48
, Issue.8
, pp. 1656-1662
-
-
Yin, S.1
Biedermannova, L.2
Vondrasek, J.3
Dokholyan, N.V.4
-
18
-
-
23444454552
-
The amber biomolecular simulation programs
-
COI: 1:CAS:528:DC%2BD2MXht1SlsbbM
-
Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. doi:10.1002/jcc.20290
-
(2005)
J Comput Chem
, vol.26
, Issue.16
, pp. 1668-1688
-
-
Case, D.A.1
Cheatham, T.E.2
Darden, T.3
Gohlke, H.4
Luo, R.5
Merz, K.M.6
Onufriev, A.7
Simmerling, C.8
Wang, B.9
Woods, R.J.10
-
19
-
-
0035025191
-
DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases
-
COI: 1:CAS:528:DC%2BD3MXktVSlsbc%3D
-
Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15(5):411–428
-
(2001)
J Comput Aided Mol Des
, vol.15
, Issue.5
, pp. 411-428
-
-
Ewing, T.J.1
Makino, S.2
Skillman, A.G.3
Kuntz, I.D.4
-
20
-
-
84986512474
-
CHARMM: a program for macromolecular energy, minimization, and dynamics calculations
-
COI: 1:CAS:528:DyaL3sXit1aiu7w%3D
-
Brooks BR, Bruccoleri RE, Olafson BD (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217
-
(1983)
J Comput Chem
, vol.4
, Issue.2
, pp. 187-217
-
-
Brooks, B.R.1
Bruccoleri, R.E.2
Olafson, B.D.3
-
21
-
-
0035789518
-
GROMACS 3.0: a package for molecular simulation and trajectory analysis
-
COI: 1:CAS:528:DC%2BD3MXnsVGjsL4%3D
-
Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306–317
-
(2001)
J Mol Model
, vol.7
, Issue.8
, pp. 306-317
-
-
Lindahl, E.1
Hess, B.2
Van Der Spoel, D.3
-
22
-
-
0029912748
-
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
-
COI: 1:CAS:528:DyaK28XmtlOitrs%3D
-
Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236
-
(1996)
J Am Chem Soc
, vol.118
, Issue.45
, pp. 11225-11236
-
-
Jorgensen, W.L.1
Maxwell, D.S.2
Tirado-Rives, J.3
-
23
-
-
0031552362
-
Development and validation of a genetic algorithm for flexible docking
-
COI: 1:CAS:528:DyaK2sXis1KntLo%3D
-
Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–48. doi:10.1006/jmbi.1996.0897
-
(1997)
J Mol Biol
, vol.267
, Issue.3
, pp. 727-748
-
-
Jones, G.1
Willett, P.2
Glen, R.C.3
Leach, A.R.4
Taylor, R.5
-
24
-
-
84883247468
-
Learned lessons, in empirical scoring with smina from the CSAR, (2011) benchmarking exercise
-
COI: 1:CAS:528:DC%2BC3sXhvVyns78%3D
-
Koes DR, Baumgartner MP, Camacho CJ (2013) Learned lessons, in empirical scoring with smina from the CSAR, (2011) benchmarking exercise. J Chem Inf Model 53(8):1893. doi:10.1021/ci300604z
-
(2013)
J Chem Inf Model
, vol.53
, Issue.8
, pp. 1893
-
-
Koes, D.R.1
Baumgartner, M.P.2
Camacho, C.J.3
-
25
-
-
0031226772
-
Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes
-
COI: 1:CAS:528:DyaK2sXnsV2it7o%3D
-
Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11(5):425–45
-
(1997)
J Comput Aided Mol Des
, vol.11
, Issue.5
, pp. 425-445
-
-
Eldridge, M.D.1
Murray, C.W.2
Auton, T.R.3
Paolini, G.V.4
Mee, R.P.5
-
26
-
-
0028454828
-
The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure
-
Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput-Aided Mol Des 8(3):243–256
-
(1994)
J Comput-Aided Mol Des
, vol.8
, Issue.3
, pp. 243-256
-
-
Böhm, H.J.1
-
27
-
-
0036022960
-
Further development and validation of empirical scoring functions for structure-based binding affinity prediction
-
COI: 1:CAS:528:DC%2BD38XltlSqs7k%3D
-
Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput-Aided Mol Des 16(1):11–26
-
(2002)
J Comput-Aided Mol Des
, vol.16
, Issue.1
, pp. 11-26
-
-
Wang, R.1
Lai, L.2
Wang, S.3
-
28
-
-
62449330667
-
Empirical scoring functions for advanced protein-ligand docking with PLANTS
-
COI: 1:CAS:528:DC%2BD1MXisVSquw%3D%3D
-
Korb O, Stützle T, Exner TE (2009) Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 49(1):84–96. doi:10.1021/ci800298z
-
(2009)
J Chem Inf Model
, vol.49
, Issue.1
, pp. 84-96
-
-
Korb, O.1
Stützle, T.2
Exner, T.E.3
-
29
-
-
12144289984
-
Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
-
COI: 1:CAS:528:DC%2BD2cXhsFyit74%3D
-
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–49. doi:10.1021/jm0306430
-
(2004)
J Med Chem
, vol.47
, Issue.7
, pp. 1739-1749
-
-
Friesner, R.A.1
Banks, J.L.2
Murphy, R.B.3
Halgren, T.A.4
Klicic, J.J.5
Mainz, D.T.6
Repasky, M.P.7
Knoll, E.H.8
Shelley, M.9
Perry, J.K.10
Shaw, D.E.11
Francis, P.12
Shenkin, P.S.13
-
30
-
-
76149120388
-
AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
-
Trott O, Olson AJ (2009) AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comp Chem 31(2):455. doi:10.1002/jcc.21334
-
(2009)
J Comp Chem
, vol.31
, Issue.2
, pp. 455
-
-
Trott, O.1
Olson, A.J.2
-
31
-
-
77955800755
-
Mean-force scoring functions for protein-ligand binding
-
Huang SY, Zou X (2010) Mean-force scoring functions for protein-ligand binding. Annu Rep Comp Chem 6:280–296
-
(2010)
Annu Rep Comp Chem
, vol.6
, pp. 280-296
-
-
Huang, S.Y.1
Zou, X.2
-
32
-
-
0033545622
-
A general and fast scoring function for protein-ligand interactions: a simplified potential approach
-
COI: 1:CAS:528:DyaK1MXht1aksrk%3D
-
Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42(5):791–804. doi:10.1021/jm980536j
-
(1999)
J Med Chem
, vol.42
, Issue.5
, pp. 791-804
-
-
Muegge, I.1
Martin, Y.C.2
-
33
-
-
0034645763
-
Knowledge-based scoring function to predict protein-ligand interactions
-
COI: 1:CAS:528:DC%2BD3cXht1Crtw%3D%3D
-
Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295(2):337–356
-
(2000)
J Mol Biol
, vol.295
, Issue.2
, pp. 337-356
-
-
Gohlke, H.1
Hendlich, M.2
Klebe, G.3
-
34
-
-
80054694711
-
GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction
-
COI: 1:CAS:528:DC%2BC3MXhtlarsLrN
-
Zhou H, Skolnick J (2011) GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophys J 101(8):2043–2052. doi:10.1016/j.bpj.2011.09.012
-
(2011)
Biophys J
, vol.101
, Issue.8
, pp. 2043-2052
-
-
Zhou, H.1
Skolnick, J.2
-
35
-
-
26444468103
-
General and targeted statistical potentials for protein-ligand interactions
-
COI: 1:CAS:528:DC%2BD2MXhtFSrsbfJ
-
Mooij WT, Verdonk ML (2005) General and targeted statistical potentials for protein-ligand interactions. Proteins 61(2):272–287. doi:10.1002/prot.20588
-
(2005)
Proteins
, vol.61
, Issue.2
, pp. 272-287
-
-
Mooij, W.T.1
Verdonk, M.L.2
-
36
-
-
77952825581
-
A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
-
COI: 1:CAS:528:DC%2BC3cXlt1Cjs78%3D
-
Ballester PJ, Mitchell JBO (2010) A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26(9):1169. doi:10.1093/bioinformatics/btq112
-
(2010)
Bioinformatics
, vol.26
, Issue.9
, pp. 1169
-
-
Ballester, P.J.1
Mitchell, J.B.O.2
-
37
-
-
33750574927
-
An iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the scoring function
-
COI: 1:CAS:528:DC%2BD28XhtFenu7fJ
-
Huang SY, Zou X (2006) An iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the scoring function. J Comput Chem 27(15):1876–1882. doi:10.1002/jcc.20505
-
(2006)
J Comput Chem
, vol.27
, Issue.15
, pp. 1876-1882
-
-
Huang, S.Y.1
Zou, X.2
-
39
-
-
84930630277
-
Deep learning
-
COI: 1:CAS:528:DC%2BC2MXht1WlurzP
-
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
40
-
-
84964698564
-
Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins
-
Ashtawy HM, Mahapatra NR (2015) Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinform 16(6):1–17. doi:10.1186/1471-2105-16-S6-S3
-
(2015)
BMC Bioinform
, vol.16
, Issue.6
, pp. 1-17
-
-
Ashtawy, H.M.1
Mahapatra, N.R.2
-
41
-
-
20444410410
-
Virtual screening of molecular databases using a support vector machine
-
COI: 1:CAS:528:DC%2BD2MXjtlWntL0%3D
-
Jorissen RN, Gilson MK (2005) Virtual screening of molecular databases using a support vector machine. J Chem Inf Model 45(3):549–561. doi:10.1021/ci049641u
-
(2005)
J Chem Inf Model
, vol.45
, Issue.3
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
42
-
-
75749126524
-
Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening
-
Sato T, Honma T, Yokoyama S (2009) Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening. J Chem Inf Model 50(1):170–185. doi:10.1021/ci900382e
-
(2009)
J Chem Inf Model
, vol.50
, Issue.1
, pp. 170-185
-
-
Sato, T.1
Honma, T.2
Yokoyama, S.3
-
43
-
-
84918779199
-
Machine-learning techniques applied to antibacterial drug discovery
-
COI: 1:CAS:528:DC%2BC2cXitFSitLvK
-
Durrant JD, Amaro RE (2015) Machine-learning techniques applied to antibacterial drug discovery. Chem Biol Drug Des 85(1):14–21. doi:10.1111/cbdd.12423
-
(2015)
Chem Biol Drug Des
, vol.85
, Issue.1
, pp. 14-21
-
-
Durrant, J.D.1
Amaro, R.E.2
-
44
-
-
84876531629
-
Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints
-
COI: 1:CAS:528:DC%2BC3sXjslOgs78%3D
-
Chupakhin V, Marcou G, Baskin I, Varnek A, Rognan D (2013) Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints. J Chem Inf Model 53(4):763–772. doi:10.1021/ci300200r
-
(2013)
J Chem Inf Model
, vol.53
, Issue.4
, pp. 763-772
-
-
Chupakhin, V.1
Marcou, G.2
Baskin, I.3
Varnek, A.4
Rognan, D.5
-
45
-
-
84883250593
-
Sfcscore rf: a random forest-based scoring function for improved affinity prediction of protein-ligand complexes
-
COI: 1:CAS:528:DC%2BC3sXot1Sqtrc%3D
-
Zilian D, Sotriffer CA (2013) Sfcscore rf: a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J Chem Inf Model 53(8):1923–1933. doi:10.1021/ci400120b
-
(2013)
J Chem Inf Model
, vol.53
, Issue.8
, pp. 1923-1933
-
-
Zilian, D.1
Sotriffer, C.A.2
-
46
-
-
84945968229
-
Predicting protein function and protein-ligand interaction with the 3D neighborhood kernel. In: Japkowicz N, Matwin S (eds) Discovery Science, pages 221–235
-
Schietgat L, Fannes T, Ramon J (2015) Predicting protein function and protein-ligand interaction with the 3D neighborhood kernel. In: Japkowicz N, Matwin S (eds) Discovery Science, pages 221–235. Springer
-
(2015)
Springer
-
-
Schietgat, L.1
Fannes, T.2
Ramon, J.3
-
47
-
-
77958585233
-
Nnscore: a neural-network-based scoring function for the characterization of protein-ligand complexes
-
COI: 1:CAS:528:DC%2BC3cXhtFKmtL7L
-
Durrant JD, McCammon JA (2010) Nnscore: a neural-network-based scoring function for the characterization of protein-ligand complexes. J Chem Inf Model 50(10):1865–1871. doi:10.1021/ci100244v
-
(2010)
J Chem Inf Model
, vol.50
, Issue.10
, pp. 1865-1871
-
-
Durrant, J.D.1
McCammon, J.A.2
-
48
-
-
82355186299
-
Nnscore 2.0: a neural-network receptor-ligand scoring function
-
COI: 1:CAS:528:DC%2BC3MXhtlGjtrnO
-
Durrant JD, McCammon JA (2011) Nnscore 2.0: a neural-network receptor-ligand scoring function. J Chem Inf Model 51(11):2897–2903. doi:10.1021/ci2003889
-
(2011)
J Chem Inf Model
, vol.51
, Issue.11
, pp. 2897-2903
-
-
Durrant, J.D.1
McCammon, J.A.2
-
49
-
-
1842740026
-
Predicting protein-ligand binding affinities using novel geometrical descriptors and machine-learning methods
-
COI: 1:CAS:528:DC%2BD2cXlvFyjtQ%3D%3D
-
Deng W, Breneman C, Embrechts MJ (2004) Predicting protein-ligand binding affinities using novel geometrical descriptors and machine-learning methods. J Chem Inf Comput Sci 44(2):699–703. doi:10.1021/ci034246+
-
(2004)
J Chem Inf Comput Sci
, vol.44
, Issue.2
, pp. 699-703
-
-
Deng, W.1
Breneman, C.2
Embrechts, M.J.3
-
50
-
-
78649517318
-
Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets
-
COI: 1:CAS:528:DC%2BC3cXht1OisrzM
-
Kramer C, Gedeck P (2010) Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets. J Chem Inf Model 50(11):1961–1969. doi:10.1021/ci100264e
-
(2010)
J Chem Inf Model
, vol.50
, Issue.11
, pp. 1961-1969
-
-
Kramer, C.1
Gedeck, P.2
-
51
-
-
84908242076
-
Beware of machine learning-based scoring functions? On the danger of developing black boxes
-
COI: 1:CAS:528:DC%2BC2cXhsFWjsrfK
-
Gabel J, Desaphy J, Rognan D (2014) Beware of machine learning-based scoring functions? On the danger of developing black boxes. J Chem Inf Model 54(10):2807–2815. doi:10.1021/ci500406k
-
(2014)
J Chem Inf Model
, vol.54
, Issue.10
, pp. 2807-2815
-
-
Gabel, J.1
Desaphy, J.2
Rognan, D.3
-
53
-
-
84864264343
-
Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking
-
COI: 1:CAS:528:DC%2BC38XovFaku7c%3D
-
Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–94. doi:10.1021/jm300687e
-
(2012)
J Med Chem
, vol.55
, Issue.14
, pp. 6582-6594
-
-
Mysinger, M.M.1
Carchia, M.2
Irwin, J.J.3
Shoichet, B.K.4
-
54
-
-
84992435460
-
-
rdkit. RDKit: Open-source cheminformatics. (Accessed 4Sep 2015)
-
rdkit. RDKit: Open-source cheminformatics. http://www.rdkit.org. (Accessed 4Sep 2015)
-
-
-
-
55
-
-
84899881824
-
Qsar modeling: where have you been? Where are you going to?
-
COI: 1:CAS:528:DC%2BC3sXhvFCrsLnE
-
Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R et al (2014) Qsar modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010. doi:10.1021/jm4004285
-
(2014)
J Med Chem
, vol.57
, Issue.12
, pp. 4977-5010
-
-
Cherkasov, A.1
Muratov, E.N.2
Fourches, D.3
Varnek, A.4
Baskin, I.I.5
Cronin, M.6
Dearden, J.7
Gramatica, P.8
Martin, Y.C.9
Todeschini, R.10
-
56
-
-
84891762026
-
The ChEMBL bioactivity database: an update
-
Patrícia Bento A, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2013) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42(D1):D1083–D1090. doi:10.1093/nar/gkt1031
-
(2013)
Nucleic Acids Res
, vol.42
, Issue.D1
, pp. D1083-D1090
-
-
Patrícia Bento, A.1
Gaulton, A.2
Hersey, A.3
Bellis, L.J.4
Chambers, J.5
Davies, M.6
Krüger, F.A.7
Light, Y.8
Mak, L.9
McGlinchey, S.10
Nowotka, M.11
Papadatos, G.12
Santos, R.13
Overington, J.P.14
-
57
-
-
77952772341
-
Extended-connectivity fingerprints
-
COI: 1:CAS:528:DC%2BC3cXlt1Onsbg%3D
-
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754. doi:10.1021/ci100050t
-
(2010)
J Chem Inf Model
, vol.50
, Issue.5
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
58
-
-
80555140075
-
Scikit-learn: machine learning in python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
-
59
-
-
80053512597
-
Open babel: an open chemical toolbox
-
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33. doi:10.1186/1758-2946-3-33
-
(2011)
J Cheminform
, vol.3
, pp. 33
-
-
O’Boyle, N.M.1
Banck, M.2
James, C.A.3
Morley, C.4
Vandermeersch, T.5
Hutchison, G.R.6
-
60
-
-
84945938870
-
-
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093
-
(2014)
Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv
, vol.1408
, pp. 5093
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
61
-
-
77951229808
-
FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins. doi:10.1002/prot.22658
-
Choi Y, Deane CM (2009) FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins. doi:10.1002/prot.22658. URL http://dx.doi.org/10.1002/prot.22658
-
(2009)
URL
-
-
Choi, Y.1
Deane, C.M.2
-
62
-
-
54849439948
-
Integrating structure- and ligand-based virtual screening: comparison of individual, parallel, and fused molecular docking and similarity search calculations on multiple targets
-
COI: 1:CAS:528:DC%2BD1cXhtlOgt7rM
-
Tan L, Geppert H, Sisay MT, Gütschow M, Bajorath J (2008) Integrating structure- and ligand-based virtual screening: comparison of individual, parallel, and fused molecular docking and similarity search calculations on multiple targets. ChemMedChem 3(10):1566–1571. doi:10.1002/cmdc.200800129
-
(2008)
ChemMedChem
, vol.3
, Issue.10
, pp. 1566-1571
-
-
Tan, L.1
Geppert, H.2
Sisay, M.T.3
Gütschow, M.4
Bajorath, J.5
-
63
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
-
COI: 1:CAS:528:DC%2BC3sXpvVGht7g%3D
-
Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53(7):1563–1575. doi:10.1021/ci400187y
-
(2013)
J Chem Inf Model
, vol.53
, Issue.7
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
64
-
-
33947245022
-
Evaluation of machine-learning methods for ligand-based virtual screening
-
Chen B, Harrison RF, Papadatos G, Willett P, Wood DJ, Lewell XQ, Greenidge P, Stiefl N (2007) Evaluation of machine-learning methods for ligand-based virtual screening. J Comput Aided Mol Des 21(1–3):53–62. doi:10.1007/s10822-006-9096-5
-
(2007)
J Comput Aided Mol Des
, vol.21
, Issue.1-3
, pp. 53-62
-
-
Chen, B.1
Harrison, R.F.2
Papadatos, G.3
Willett, P.4
Wood, D.J.5
Lewell, X.Q.6
Greenidge, P.7
Stiefl, N.8
|