-
1
-
-
1542743726
-
60: Buckminsterfullerene
-
60: Buckminsterfullerene,” Nature, 318, 162 (1985).
-
(1985)
Nature
, vol.318
, pp. 162
-
-
Kroto, H.W.1
Heath, J.R.2
O’Brien, S.C.3
Curl, R.F.4
Smalley, R.E.5
-
2
-
-
0342819025
-
Helical Microtubules of Graphitic Carbon
-
S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 354, 56 (1991).
-
(1991)
Nature
, vol.354
, pp. 56
-
-
Iijima, S.1
-
3
-
-
7444220645
-
Electric Field Effect in Atomically Thin Carbon Films
-
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, 306, 666 (2004).
-
(2004)
Science
, vol.306
, pp. 666
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
4
-
-
0035984206
-
Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models
-
D. M. Guldi, “Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models,” Chem. Soc. Rev., 31, 22 (2002).
-
(2002)
Chem. Soc. Rev.
, vol.31
, pp. 22
-
-
Guldi, D.M.1
-
5
-
-
0037747461
-
New perspective of electron transfer chemistry
-
S. Fukuzumi, “New perspective of electron transfer chemistry,” Org. Biomol. Chem., 1, 609 (2003).
-
(2003)
Org. Biomol. Chem.
, vol.1
, pp. 609
-
-
Fukuzumi, S.1
-
6
-
-
23144452980
-
Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines
-
F. D’Souza and O. Ito, “Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines,” Coord. Chem. Rev., 249, 1410 (2005).
-
(2005)
Coord. Chem. Rev.
, vol.249
, pp. 1410
-
-
D’Souza, F.1
Ito, O.2
-
7
-
-
42149130269
-
Development of bioinspired artificial photosynthetic systems
-
S. Fukuzumi, “Development of bioinspired artificial photosynthetic systems,” Phys. Chem. Chem. Phys., 10, 2283 (2008).
-
(2008)
Phys. Chem. Chem. Phys.
, vol.10
, pp. 2283
-
-
Fukuzumi, S.1
-
8
-
-
72949109936
-
Solar Fuels via Artificial Photosynthesis
-
D. Gust, T. A. Moore, and A. L. Moore, “Solar Fuels via Artificial Photosynthesis,” Acc. Chem. Res., 42, 1890 (2009).
-
(2009)
Acc. Chem. Res.
, vol.42
, pp. 1890
-
-
Gust, D.1
Moore, T.A.2
Moore, A.L.3
-
9
-
-
84886814390
-
Long-lived photoinduced charge separation for solar cell applications in supramolecular complexes of multi-metalloporphyrins and fullerenes
-
S. Fukuzumi and K. Ohkubo, “Long-lived photoinduced charge separation for solar cell applications in supramolecular complexes of multi-metalloporphyrins and fullerenes,” Dalton Trans., 42, 15846 (2013).
-
(2013)
Dalton Trans.
, vol.42
, pp. 15846
-
-
Fukuzumi, S.1
Ohkubo, K.2
-
10
-
-
84866241647
-
Supramolecular electron transfer by anion binding
-
S. Fukuzumi, K. Ohkubo, F. D’Souza, and J. L. Sessler, “Supramolecular electron transfer by anion binding,” Chem. Commun., 48, 9801 (2012).
-
(2012)
Chem. Commun.
, vol.48
, pp. 9801
-
-
Fukuzumi, S.1
Ohkubo, K.2
D’Souza, F.3
Sessler, J.L.4
-
11
-
-
84901283253
-
Long-Lived Charge Separation and Applications in Artificial Photosynthesis
-
S. Fukuzumi, K. Ohkubo, and T. Suenobu, “Long-Lived Charge Separation and Applications in Artificial Photosynthesis,” Acc. Chem. Res., 47, 1455 (2014).
-
(2014)
Acc. Chem. Res.
, vol.47
, pp. 1455
-
-
Fukuzumi, S.1
Ohkubo, K.2
Suenobu, T.3
-
12
-
-
84891881840
-
Photosynthetic Antenna-Reaction Center Mimicry by Using Boron Dipyrromethene Sensitizers
-
M. E. El-Khouly, S. Fukuzumi, and F. D’Souza, “Photosynthetic Antenna-Reaction Center Mimicry by Using Boron Dipyrromethene Sensitizers,” ChemPhysChem, 15, 30 (2014).
-
(2014)
ChemPhysChem
, vol.15
, pp. 30
-
-
El-Khouly, M.E.1
Fukuzumi, S.2
D’Souza, F.3
-
14
-
-
84973401328
-
Design and photochemical study of supramolecular donor-acceptor systems assembled via metal-ligand axial coordination
-
K. C. C. B. and F. D’Souza, “Design and photochemical study of supramolecular donor-acceptor systems assembled via metal-ligand axial coordination,” Coord. Chem. Rev., 322, 104 (2016).
-
(2016)
Coord. Chem. Rev.
, vol.322
, pp. 104
-
-
B, K.C.C.1
D’Souza, F.2
-
15
-
-
84956893894
-
A multicomponent molecular approach to artificial photosynthesis - The role of fullerenes and endohedral metallofullerenes
-
M. Rudolf, S. V. Kirner, and D. M. Guldi, “A multicomponent molecular approach to artificial photosynthesis - the role of fullerenes and endohedral metallofullerenes,” Chem. Soc. Rev., 45, 612 (2016).
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 612
-
-
Rudolf, M.1
Kirner, S.V.2
Guldi, D.M.3
-
16
-
-
28844454263
-
Carbon Nanotubes in Electron Donor-Acceptor Nanocomposites
-
D. M. Guldi, G. M. A. Rahman, F. Zerbetto, and M. Prato, “Carbon Nanotubes in Electron Donor-Acceptor Nanocomposites,” Acc. Chem. Res., 38, 871 (2005).
-
(2005)
Acc. Chem. Res.
, vol.38
, pp. 871
-
-
Guldi, D.M.1
Rahman, G.M.A.2
Zerbetto, F.3
Prato, M.4
-
17
-
-
33744914356
-
Multifunctional molecular carbon materials-from fullerenes to carbon
-
Dirk M. Guldi, G. M. Aminur Rahman, Vito Sgobba, and Christian Ehli, “Multifunctional molecular carbon materials-from fullerenes to carbon,” Chem. Soc. Rev., 35, 471 (2006).
-
(2006)
Chem. Soc. Rev.
, vol.35
, pp. 471
-
-
Guldi, D.M.1
Aminur Rahman, G.M.2
Sgobba, V.3
Ehli, C.4
-
18
-
-
68749089831
-
Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: Electron transfer, sensing, switching, and catalytic applications
-
F. D’Souza and O. Ito, “Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications,” Chem. Commun., 4913 (2009).
-
(2009)
Chem. Commun.
, pp. 4913
-
-
D’Souza, F.1
Ito, O.2
-
19
-
-
84863959863
-
Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes
-
M. Vizuete, M. Barrejón, M. J. Gónez-Escalonilla, and F. Langa, “Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes,” Nanoscale, 4, 4370 (2012).
-
(2012)
Nanoscale
, vol.4
, pp. 4370
-
-
Vizuete, M.1
Barrejón, M.2
Gónez-Escalonilla, M.J.3
Langa, F.4
-
20
-
-
84874187469
-
Photofunctional Hybrid Nanocarbon Materials
-
Tomokazu Umeyama and H. Imahori, “Photofunctional Hybrid Nanocarbon Materials,” J. Phys. Chem. C, 117, 3195 (2013).
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 3195
-
-
Umeyama, T.1
Imahori, H.2
-
22
-
-
84887387674
-
Light Harvesting, Photosensitized Electron Transfer in Nanocarbon-Sensitizer Hybrids
-
O. Ito and F. D’Souza, “Light Harvesting, Photosensitized Electron Transfer in Nanocarbon-Sensitizer Hybrids,” ECS J. Solid State Sci. Technol., 2, M3063 (2013).
-
(2013)
ECS J. Solid State Sci. Technol.
, vol.2
, pp. M3063
-
-
Ito, O.1
D’Souza, F.2
-
23
-
-
84928333621
-
Phthalocyanine-Nanocarbon Ensembles: From Discrete Molecular and Supramolecular Systems to Hybrid Nanomaterials
-
G. Bottari, G. de la Torre, and T. Torres, “Phthalocyanine-Nanocarbon Ensembles: From Discrete Molecular and Supramolecular Systems to Hybrid Nanomaterials,” Acc. Chem. Res., 48, 900 (2015).
-
(2015)
Acc. Chem. Res.
, vol.48
, pp. 900
-
-
Bottari, G.1
De La Torre, G.2
Torres, T.3
-
24
-
-
41149177389
-
Photofunctional nanomaterials composed of multiporphyrins and carbon-based π-electron acceptors
-
S. Fukuzumi and T. Kojima, “Photofunctional nanomaterials composed of multiporphyrins and carbon-based π-electron acceptors,” J. Mater. Chem., 18, 1427 (2008).
-
(2008)
J. Mater. Chem.
, vol.18
, pp. 1427
-
-
Fukuzumi, S.1
Kojima, T.2
-
25
-
-
84896986603
-
Recent advances in multifunctional nanocarbons used in dye-sensitized solar cells
-
R. D. Costa, F. Lodermeyer, R. Casillas, and D. M. Guldi, “Recent advances in multifunctional nanocarbons used in dye-sensitized solar cells,” Energy Environ. Sci., 7, 1281 (2014).
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1281
-
-
Costa, R.D.1
Lodermeyer, F.2
Casillas, R.3
Guldi, D.M.4
-
26
-
-
84857579436
-
Assemblies of artificial photosynthetic reaction centres, Nanotubes
-
S. Fukuzumi and K. Ohkubo, “Assemblies of artificial photosynthetic reaction centres, Nanotubes,” J. Mater. Chem., 22, 4575 (2012).
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 4575
-
-
Fukuzumi, S.1
Ohkubo, K.2
-
30
-
-
79954621866
-
•-radical anions
-
•-radical anions,” Dalton Trans., 40, 4453 (2011).
-
(2011)
Dalton Trans.
, vol.40
, pp. 4453
-
-
Konarev, D.V.1
Kuzmin, A.V.2
Simonov, S.V.3
Khasanov, S.S.4
Yudanova, E.I.5
Lyubovskaya, R.N.6
-
31
-
-
0001610490
-
60
-
60,” Nature, 353, 147 (1991).
-
(1991)
Nature
, vol.353
, pp. 147
-
-
David, W.I.F.1
Ibberson, R.M.2
Matthewman, J.C.3
Prassides, K.4
John, T.5
Dennis, S.6
Hare, J.P.7
Kroto, H.W.8
Taylor, R.9
Walton, D.R.M.10
-
32
-
-
0000468210
-
60 Anions via Density Functional Calculations
-
60 Anions via Density Functional Calculations,” J. Phys. Chem., 100, 14892 (1996).
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 14892
-
-
Gree, W.H.1
Gorun, S.M.2
Fitzgerald, G.3
Fowler, P.W.4
Ceulemans, A.5
Titeca, B.C.6
-
34
-
-
0345733982
-
3+
-
3+,” J. Am. Chem. Soc., 125, 15738 (2003).
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 15738
-
-
Bruno, C.1
Doubitski, I.2
Marcaccio, M.3
Paolucci, F.4
Paolucci, D.5
Zaopo, A.6
-
36
-
-
0000415504
-
Discrete Fulleride Anions and Fullerenium Cations
-
C. A. Reed and R. D. Bolskar, “Discrete Fulleride Anions and Fullerenium Cations,” Chem. Rev., 100, 1075 (2000).
-
(2000)
Chem. Rev.
, vol.100
, pp. 1075
-
-
Reed, C.A.1
Bolskar, R.D.2
-
37
-
-
84978468516
-
When a nanoparticle meets a superhalogen: A case study with C60 fullerene
-
C. Sikorska, “When a nanoparticle meets a superhalogen: a case study with C60 fullerene,” Phys. Chem. Chem. Phys., 18, 18739 (2016).
-
(2016)
Phys. Chem. Chem. Phys.
, vol.18
, pp. 18739
-
-
Sikorska, C.1
-
38
-
-
0001494304
-
60 quenching by electron acceptors TCNQ and TCNE in solution. Laser photolysis study
-
60 quenching by electron acceptors TCNQ and TCNE in solution. Laser photolysis study,” Chem. Phys. Lett., 208, 431 (1993).
-
(1993)
Chem. Phys. Lett.
, vol.208
, pp. 431
-
-
Nadtochenko, V.A.1
Denisov, N.N.2
Rubtsov, I.V.3
Lobach, A.S.4
Moravskii, A.P.5
-
41
-
-
0035915314
-
Scandium Ion-Promoted Photoinduced Electron-Transfer Oxidation of Fullerenes and Derivatives by p-Chloranil and p-Benzoquinone
-
S. Fukuzumi, H. Mori, H. Imahori, T. Suenobu, Y. Araki, O. Ito, and K. M. Kadish, “Scandium Ion-Promoted Photoinduced Electron-Transfer Oxidation of Fullerenes and Derivatives by p-Chloranil and p-Benzoquinone,” J. Am. Chem. Soc., 123, 12458 (2001).
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 12458
-
-
Fukuzumi, S.1
Mori, H.2
Imahori, H.3
Suenobu, T.4
Araki, Y.5
Ito, O.6
Kadish, K.M.7
-
42
-
-
33846838990
-
Fullerene acting as an electron donor in a donor-acceptor dyad to attain the long-lived charge-separated state by complexation with scandium ion
-
K. Ohkubo, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, Á. Sastre-Santos, and S. Fukuzumi, “Fullerene acting as an electron donor in a donor-acceptor dyad to attain the long-lived charge-separated state by complexation with scandium ion,” Chem. Commun., 589 (2007).
-
(2007)
Chem. Commun.
, pp. 589
-
-
Ohkubo, K.1
Ortiz, J.2
Martín-Gomis, L.3
Fernández-Lázaro, F.4
Sastre-Santos, Á.5
Fukuzumi, S.6
-
43
-
-
84935840310
-
60 fullerene: Tuning intramolecular photoinduced electron transfer process with subphthalocyanines
-
60 fullerene: tuning intramolecular photoinduced electron transfer process with subphthalocyanines,” Chem. Sci., 6, 4141 (2015).
-
(2015)
Chem. Sci.
, vol.6
, pp. 4141
-
-
Rudolf, M.1
Trukhina, O.2
Perles, J.3
Feng, L.4
Akasaka, T.5
Torres, T.6
Guldi, D.M.7
-
44
-
-
1242314262
-
Electron-Transfer State of 9-Mesityl-10-methylacridinium Ion with a Much Longer Lifetime and Higher Energy than that of Natural Photosynthetic Reaction Center
-
S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko, and H. Lemmetyinen, “Electron-Transfer State of 9-Mesityl-10-methylacridinium Ion with a Much Longer Lifetime and Higher Energy than that of Natural Photosynthetic Reaction Center,” J. Am. Chem. Soc., 126, 1600 (2004).
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 1600
-
-
Fukuzumi, S.1
Kotani, H.2
Ohkubo, K.3
Ogo, S.4
Tkachenko, N.V.5
Lemmetyinen, H.6
-
45
-
-
34547453796
-
Enhanced photoinduced oligomerization of fullerene via radical coupling between fullerene radical cation and radical anion using 9-mesityl-10-methylacridinium ion
-
K. Ohkubo, R. Iwata, T. Yanagimoto, and S. Fukuzumi, “Enhanced photoinduced oligomerization of fullerene via radical coupling between fullerene radical cation and radical anion using 9-mesityl-10-methylacridinium ion,” Chem. Commun., 3139 (2007).
-
(2007)
Chem. Commun.
, pp. 3139
-
-
Ohkubo, K.1
Iwata, R.2
Yanagimoto, T.3
Fukuzumi, S.4
-
46
-
-
0037419297
-
Driving Force Dependence of Intermolecular Electron-Transfer Reactions of Fullerenes
-
S. Fukuzumi, K. Ohkubo, H. Imahori, and D. M. Guldi, “Driving Force Dependence of Intermolecular Electron-Transfer Reactions of Fullerenes,” Chem.-Eur. J., 9, 1585 (2003).
-
(2003)
Chem.-Eur. J.
, vol.9
, pp. 1585
-
-
Fukuzumi, S.1
Ohkubo, K.2
Imahori, H.3
Guldi, D.M.4
-
48
-
-
84881400590
-
Small Reorganization Energies of Photoinduced Electron Transfer between Spherical Fullerene
-
Y. Kawashima, K. Ohkubo, and S. Fukuzumi, “Small Reorganization Energies of Photoinduced Electron Transfer between Spherical Fullerene,” J. Phys. Chem. A, 117, 6737 (2013).
-
(2013)
J. Phys. Chem. A
, vol.117
, pp. 6737
-
-
Kawashima, Y.1
Ohkubo, K.2
Fukuzumi, S.3
-
49
-
-
84988648673
-
Synthetically tuneable biomimetic artificial photosynthetic reaction centres that closely resemble the natural system in purple bacteria
-
S.-H. Lee, I. M. Blake, A. G. Larsen, J. A. McDonald, K. Ohkubo, S. Fukuzumi, J. R. Reimers, and M. J. Crossley, “Synthetically tuneable biomimetic artificial photosynthetic reaction centres that closely resemble the natural system in purple bacteria,” Chem. Sci., 7, 6534 (2016).
-
(2016)
Chem. Sci.
, vol.7
, pp. 6534
-
-
Lee, S.-H.1
Blake, I.M.2
Larsen, A.G.3
McDonald, J.A.4
Ohkubo, K.5
Fukuzumi, S.6
Reimers, J.R.7
Crossley, M.J.8
-
50
-
-
84964636375
-
Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin-fullerene conjugates
-
C. O. Obondi, G. N. Lim, B. Churchill, P. K. Poddutoori, A. van der Est, and F. D’Souza, “Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin-fullerene conjugates,” Nanoscale, 8, 8333 (2016).
-
(2016)
Nanoscale
, vol.8
, pp. 8333
-
-
Obondi, C.O.1
Lim, G.N.2
Churchill, B.3
Poddutoori, P.K.4
Van Der Est, A.5
D’Souza, F.6
-
51
-
-
84926500291
-
Multi-modular, tris(triphenylamine) zinc porphyrin-zinc phthalocyanine-fullerene conjugate as a broadband capturing, charge stabilizing, photosynthetic ‘antenna-reaction center’ mimic
-
C. B. KC, G. N. Lim, and F. D’Souza, “Multi-modular, tris(triphenylamine) zinc porphyrin-zinc phthalocyanine-fullerene conjugate as a broadband capturing, charge stabilizing, photosynthetic ‘antenna-reaction center’ mimic,” Nanoscale, 7, 6813 (2015).
-
(2015)
Nanoscale
, vol.7
, pp. 6813
-
-
Kc, C.B.1
Lim, G.N.2
D’Souza, F.3
-
52
-
-
84946882269
-
Long-Lived Photoinduced Charge Separation in Inclusion Complexes Composed of a Phenothiazine-Bridged Cyclic Porphyrin Dimer and Fullerenes
-
T. Kamimura, K. Ohkubo, Y. Kawashima, S. Ozako, K. Sakaguchi, S. Fukuzumi, and F. Tani, “Long-Lived Photoinduced Charge Separation in Inclusion Complexes Composed of a Phenothiazine-Bridged Cyclic Porphyrin Dimer and Fullerenes,” J. Phys. Chem. C, 119, 25634 (2015).
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 25634
-
-
Kamimura, T.1
Ohkubo, K.2
Kawashima, Y.3
Ozako, S.4
Sakaguchi, K.5
Fukuzumi, S.6
Tani, F.7
-
53
-
-
84902504380
-
Supramolecular Tetrad Featuring Covalently Linked Bis(porphyrin)-Phthalocyanine Coordinated to Fullerene: Construction and Photochemical Studies
-
C. B. KC, G. N. Lim, P. A. Karr, and F. D’Souza, “Supramolecular Tetrad Featuring Covalently Linked Bis(porphyrin)-Phthalocyanine Coordinated to Fullerene: Construction and Photochemical Studies,” Chem.-Eur. J., 20, 7725 (2014).
-
(2014)
Chem.-Eur. J.
, vol.20
, pp. 7725
-
-
Kc, C.B.1
Lim, G.N.2
Karr, P.A.3
D’Souza, F.4
-
54
-
-
82455219506
-
Long-Lived Long-Distance Photochemically Induced Spin-Polarized Charge Separation in β,β’-Pyrrolic Fused Ferrocene-Porphyrin-Fullerene Systems
-
S. H. Lee, A. G. Larsen, K. Ohkubo, J. R. Reimers, S. Fukuzumi, and M. J. Crossley, “Long-Lived Long-Distance Photochemically Induced Spin-Polarized Charge Separation in β,β’-Pyrrolic Fused Ferrocene-Porphyrin-Fullerene Systems,” Chem. Sci., 3, 257 (2012).
-
(2012)
Chem. Sci.
, vol.3
, pp. 257
-
-
Lee, S.H.1
Larsen, A.G.2
Ohkubo, K.3
Reimers, J.R.4
Fukuzumi, S.5
Crossley, M.J.6
-
55
-
-
79959871470
-
Multiple Photosynthetic Reaction Centres Composed of Supramolecular Assemblies of Zinc Porphyrin Dendrimers with a Fullerene Acceptor
-
S. Fukuzumi, K. Saito, Y. Kashiwagi, M. J. Crossley, S. Gadde, F. D’Souza, Y. Araki, and O. Ito, “Multiple Photosynthetic Reaction Centres Composed of Supramolecular Assemblies of Zinc Porphyrin Dendrimers with a Fullerene Acceptor,” Chem. Commun., 47, 7980 (2011).
-
(2011)
Chem. Commun.
, vol.47
, pp. 7980
-
-
Fukuzumi, S.1
Saito, K.2
Kashiwagi, Y.3
Crossley, M.J.4
Gadde, S.5
D’Souza, F.6
Araki, Y.7
Ito, O.8
-
56
-
-
84948697030
-
60 supramolecular complexes
-
60 supramolecular complexes,” Chem. Commun., 51, 17517 (2015).
-
(2015)
Chem. Commun.
, vol.51
, pp. 17517
-
-
Ohkubo, K.1
Hasegawa, T.2
Rein, R.3
Solladié, N.4
Fukuzumi, S.5
-
58
-
-
84941644094
-
On-off switch of charge-separated states of pyridine-vinylene-linked porphyrin-C60 conjugates detected by EPR
-
S. V. Kirner, D. Arteaga, C. Henkel, J. T. Margraf, N. Alegret, K. Ohkubo, B. Insuasty, A. Ortiz, N. Martín, L. Echegoyen, S. Fukuzumi, T. Clark, and D. M. Guldi, “On-off switch of charge-separated states of pyridine-vinylene-linked porphyrin-C60 conjugates detected by EPR,” Chem. Sci., 6, 5994 (2015).
-
(2015)
Chem. Sci.
, vol.6
, pp. 5994
-
-
Kirner, S.V.1
Arteaga, D.2
Henkel, C.3
Margraf, J.T.4
Alegret, N.5
Ohkubo, K.6
Insuasty, B.7
Ortiz, A.8
Martín, N.9
Echegoyen, L.10
Fukuzumi, S.11
Clark, T.12
Guldi, D.M.13
-
59
-
-
0034804017
-
Charge Separation in a Novel Artificial Photosynthetic Reaction Center Lives 380 ms
-
H. Imahori, D. M. Guldi, K. Tamaki, Y. Yoshida, C. Luo, Y. Sakata, and S. Fukuzumi, “Charge Separation in a Novel Artificial Photosynthetic Reaction Center Lives 380 ms,” J. Am. Chem. Soc., 123, 6617 (2001).
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 6617
-
-
Imahori, H.1
Guldi, D.M.2
Tamaki, K.3
Yoshida, Y.4
Luo, C.5
Sakata, Y.6
Fukuzumi, S.7
-
60
-
-
3142728629
-
Long-lived Charge-Separated State Generated in Ferrocene-meso,meso-Linked Porphyrin Trimer-Fullerene Pentad with an Extremely High Quantum Yield
-
H. Imahori, Y. Sekiguchi, Y. Kashiwagi, T. Sato, Y. Araki, O. Ito, H. Yamada, and S. Fukuzumi, “Long-lived Charge-Separated State Generated in Ferrocene-meso,meso-Linked Porphyrin Trimer-Fullerene Pentad with an Extremely High Quantum Yield,” Chem.-Eur. J., 10, 3184 (2004).
-
(2004)
Chem.-Eur. J.
, vol.10
, pp. 3184
-
-
Imahori, H.1
Sekiguchi, Y.2
Kashiwagi, Y.3
Sato, T.4
Araki, Y.5
Ito, O.6
Yamada, H.7
Fukuzumi, S.8
-
61
-
-
0442311069
-
A Molecular Tetrad that Allows the Highly Efficient Energy Storage for 1.6 s at 163 K
-
D. M. Guldi, H. Imahori, K. Tamaki, Y. Kashiwagi, H. Yamada, Y. Sakata, and S. Fukuzumi, “A Molecular Tetrad that Allows the Highly Efficient Energy Storage for 1.6 s at 163 K,” J. Phys. Chem. A, 108, 541 (2004).
-
(2004)
J. Phys. Chem. A
, vol.108
, pp. 541
-
-
Guldi, D.M.1
Imahori, H.2
Tamaki, K.3
Kashiwagi, Y.4
Yamada, H.5
Sakata, Y.6
Fukuzumi, S.7
-
62
-
-
77955395647
-
Molecular Semiconductors in Organic Photovoltaic Cells
-
A. W. Hains, Z. Q. Liang, M. A. Woodhouse, and B. A. Gregg, “Molecular Semiconductors in Organic Photovoltaic Cells,” Chem. Rev., 110, 6689 (2010).
-
(2010)
Chem. Rev.
, vol.110
, pp. 6689
-
-
Hains, A.W.1
Liang, Z.Q.2
Woodhouse, M.A.3
Gregg, B.A.4
-
63
-
-
79251577124
-
Fullerene derivative acceptors for high performance polymer solar cells
-
Y. He and Y. Li, “Fullerene derivative acceptors for high performance polymer solar cells,” Phys. Chem. Chem. Phys., 13, 1970 (2011).
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 1970
-
-
He, Y.1
Li, Y.2
-
64
-
-
84923092581
-
A molecular nematic liquid crystalline material for high-performance organic photovoltaics
-
K. Sun, Z. Xiao, S. Lu, W. Zajaczkowski, W. Pisula, E. Hanssen, J. M. White, R. M. Williamson, J. Subbiah, J. Ouyang, A. B. Holmes, W. W. H. Wong, and D. J. Jones, “A molecular nematic liquid crystalline material for high-performance organic photovoltaics,” Nat. Commun., 6, 7013/1-7013/9 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 7013/1-7013/9
-
-
Sun, K.1
Xiao, Z.2
Lu, S.3
Zajaczkowski, W.4
Pisula, W.5
Hanssen, E.6
White, J.M.7
Williamson, R.M.8
Subbiah, J.9
Ouyang, J.10
Holmes, A.B.11
Wong, W.W.H.12
Jones, D.J.13
-
65
-
-
84938581444
-
Status and prospects for ternary organic Photovoltaics
-
L. Lu, M. A. Kelly, W. You, and L. Yu, “Status and prospects for ternary organic Photovoltaics,” Nat. Photonics, 9, 491 (2015).
-
(2015)
Nat. Photonics
, vol.9
, pp. 491
-
-
Lu, L.1
Kelly, M.A.2
You, W.3
Yu, L.4
-
66
-
-
0041734948
-
Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM plastic’ solar cells
-
M. T. Rispens, A. Meetsma, R. Rittberger, C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM plastic’ solar cells,” Chem. Commun., 2116 (2003).
-
(2003)
Chem. Commun.
, pp. 2116
-
-
Rispens, M.T.1
Meetsma, A.2
Rittberger, R.3
Brabec, C.J.4
Sariciftci, N.S.5
Hummelen, J.C.6
-
67
-
-
84864442023
-
Design Concept for High-LUMO-level Fullerene Electron-acceptors for Organic Solar Cells
-
Y. Matsuo, “Design Concept for High-LUMO-level Fullerene Electron-acceptors for Organic Solar Cells,” Chem. Lett., 41, 754 (2012).
-
(2012)
Chem. Lett.
, vol.41
, pp. 754
-
-
Matsuo, Y.1
-
68
-
-
84994493595
-
Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor
-
D. M. Stoltzfus, J. E. Donaghey, A. Armin, P. E. Shaw, P. L. Burn, and P. Meredith, “Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor,” Chem. Rev., 116, 12920 (2016).
-
(2016)
Chem. Rev.
, vol.116
, pp. 12920
-
-
Stoltzfus, D.M.1
Donaghey, J.E.2
Armin, A.3
Shaw, P.E.4
Burn, P.L.5
Meredith, P.6
-
69
-
-
84978399751
-
Quantitative structure-property relationship model leading to virtual screening of fullerene derivatives: Exploring structural attributes critical for photoconversion efficiency of polymer solar cell acceptors
-
S. Kar, N. Sizochenko, L. Ahmed, V. S. Batista, and J. Leszczynski, “Quantitative structure-property relationship model leading to virtual screening of fullerene derivatives: Exploring structural attributes critical for photoconversion efficiency of polymer solar cell acceptors,” Nano Energy, 26, 677 (2016).
-
(2016)
Nano Energy
, vol.26
, pp. 677
-
-
Kar, S.1
Sizochenko, N.2
Ahmed, L.3
Batista, V.S.4
Leszczynski, J.5
-
70
-
-
84948428465
-
Solution processed thick film organic solar cells
-
C. Duan, F. Huang, and Y. Cao, “Solution processed thick film organic solar cells,” Polym. Chem., 6, 8081 (2015).
-
(2015)
Polym. Chem.
, vol.6
, pp. 8081
-
-
Duan, C.1
Huang, F.2
Cao, Y.3
-
71
-
-
84994718015
-
The use of an n-type macromolecular additive as a simple yet effective tool for improving and stabilizing the performance of organic solar cells
-
K. H. Park, Y. An, S. Jung, H. Park, and C. Yang, “The use of an n-type macromolecular additive as a simple yet effective tool for improving and stabilizing the performance of organic solar cells,” Energy Environ. Sci., 9, 3464 (2016).
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 3464
-
-
Park, K.H.1
An, Y.2
Jung, S.3
Park, H.4
Yang, C.5
-
72
-
-
84862971832
-
Organic photovoltaic cells based on unconventional electron donor fullerene and electron acceptor copper hexadecafluorophthalocyanine
-
J. L. Yang, P. Sullivan, S. Schumann, I. Hancox, and T. S. Jones, “Organic photovoltaic cells based on unconventional electron donor fullerene and electron acceptor copper hexadecafluorophthalocyanine,” Appl. Phys. Lett., 100, 023307 (2012).
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 023307
-
-
Yang, J.L.1
Sullivan, P.2
Schumann, S.3
Hancox, I.4
Jones, T.S.5
-
73
-
-
84897855399
-
Electron-donor function of methanofullerenes in donor-acceptor bulk heterojunction systems
-
Y. Ie, M. Karakawa, S. Jinnai, H. Yoshida, A. Saeki, S. Seki, S. Yamamoto, H. Ohkitabe, and Y. Aso, “Electron-donor function of methanofullerenes in donor-acceptor bulk heterojunction systems,” Chem. Commun., 50, 4123 (2014).
-
(2014)
Chem. Commun.
, vol.50
, pp. 4123
-
-
Ie, Y.1
Karakawa, M.2
Jinnai, S.3
Yoshida, H.4
Saeki, A.5
Seki, S.6
Yamamoto, S.7
Ohkitabe, H.8
Aso, Y.9
-
74
-
-
2342503419
-
Carbon Nanotubes: Basic Concepts and Physical Properties
-
VCH, Weinheim
-
S. Reich, C. Thomsen, and J. Maultzsch, “Carbon Nanotubes: Basic Concepts and Physical Properties,” VCH, Weinheim, 2004.
-
(2004)
-
-
Reich, S.1
Thomsen, C.2
Maultzsch, J.3
-
75
-
-
84874402056
-
Electrochemical processing of discrete single-walled carbon nanotube anions
-
S. A. Hodge, S. Fogden, C. A. Howard, N. T. Skipper, and M. S. P. Shaffer, “Electrochemical processing of discrete single-walled carbon nanotube anions,” ACS Nano, 7, 1769 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 1769
-
-
Hodge, S.A.1
Fogden, S.2
Howard, C.A.3
Skipper, N.T.4
Shaffer, M.S.P.5
-
76
-
-
84879956660
-
Giant cationic poly-electrolytes generated via electrochemical oxidation of single-walled carbon nanotubes
-
S. A. Hodge, M. K. Bayazit, H. H. Tay, and M. S. P. Shaffer, “Giant cationic poly-electrolytes generated via electrochemical oxidation of single-walled carbon nanotubes”, Nat. Commun., 4, 2989/1 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 2989/1
-
-
Hodge, S.A.1
Bayazit, M.K.2
Tay, H.H.3
Shaffer, M.S.P.4
-
77
-
-
33847421330
-
Nondestructive Formation of Supramolecular Nanohybrids of Single-Walled Carbon Nanotubes with Flexible Porphyrinic Polypeptides
-
K. Saito, V. Troiani, H. Qiu, N. Solladié, T. Sakata, H. Mori, M. Ohama, and S. Fukuzumi, “Nondestructive Formation of Supramolecular Nanohybrids of Single-Walled Carbon Nanotubes with Flexible Porphyrinic Polypeptides,” J. Phys. Chem. C, 111, 1194 (2007).
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 1194
-
-
Saito, K.1
Troiani, V.2
Qiu, H.3
Solladié, N.4
Sakata, T.5
Mori, H.6
Ohama, M.7
Fukuzumi, S.8
-
78
-
-
84865503714
-
Functionalization of Diameter-Sorted Semiconductive SWCNTs with Photosensitizing Porphyrins: Syntheses and Photoinduced Electron Transfer
-
S. K. Das, A. S. D. Sandanayaka, N. K. Subbaiyan, M. E. Zandler, O. Ito, and F. D’Souza, “Functionalization of Diameter-Sorted Semiconductive SWCNTs with Photosensitizing Porphyrins: Syntheses and Photoinduced Electron Transfer,” Chem.-Eur. J., 18, 11388 (2012).
-
(2012)
Chem.-Eur. J.
, vol.18
, pp. 11388
-
-
Das, S.K.1
Sandanayaka, A.S.D.2
Subbaiyan, N.K.3
Zandler, M.E.4
Ito, O.5
D’Souza, F.6
-
80
-
-
69749100160
-
Photoinduced Formation and Characterization of Electron-Hole Pairs in Azaxanthylium-Derivatized Short Single-Walled Carbon Nanotubes
-
R. Martín, L. B. Jiménez, M. Álvaro, J. C. Scaiano, and H. García, “Photoinduced Formation and Characterization of Electron-Hole Pairs in Azaxanthylium-Derivatized Short Single-Walled Carbon Nanotubes,” Chem.-Eur. J., 15, 8751 (2009).
-
(2009)
Chem.-Eur. J.
, vol.15
, pp. 8751
-
-
Martín, R.1
Jiménez, L.B.2
Álvaro, M.3
Scaiano, J.C.4
García, H.5
-
81
-
-
85000632625
-
Quaternized Pyridyloxy Phthalocyanines Render Aqueous Electron-Donor Carbon Nanotubes as Unprecedented Supramolecular Materials for Energy Conversion
-
E. Anaya-Plaza, M. M. Oliva, A. Kunzmann, C. Romero-Nieto, R. D. Costa, A. de la Escosura, D. M. Guldi, and T. Torres, “Quaternized Pyridyloxy Phthalocyanines Render Aqueous Electron-Donor Carbon Nanotubes as Unprecedented Supramolecular Materials for Energy Conversion,” Adv. Funct. Mater., 25, 7418 (2015).
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 7418
-
-
Anaya-Plaza, E.1
Oliva, M.M.2
Kunzmann, A.3
Romero-Nieto, C.4
Costa, R.D.5
De La Escosura, A.6
Guldi, D.M.7
Torres, T.8
-
82
-
-
84929175588
-
Covalent decoration onto the outer walls of double walled carbon nanotubes with perylenediimides
-
M. Barrejón, S. Pla, I. Berlanga, M. J. Gómez-Escalonilla, L. Martín-Gomis, J. L. G. Fierro, M. Zhang, M. Yudasaka, S. Iijima, H. B. Gobeze, F. D’Souza, Á. Sastre-Santos, and F. Langa, “Covalent decoration onto the outer walls of double walled carbon nanotubes with perylenediimides,” J. Mater. Chem. C, 3, 4960 (2015).
-
(2015)
J. Mater. Chem. C
, vol.3
, pp. 4960
-
-
Barrejón, M.1
Pla, S.2
Berlanga, I.3
Gómez-Escalonilla, M.J.4
Martín-Gomis, L.5
Fierro, J.L.G.6
Zhang, M.7
Yudasaka, M.8
Iijima, S.9
Gobeze, H.B.10
D’Souza, F.11
Sastre-Santos, Á.12
Langa, F.13
-
83
-
-
84967211869
-
Structure, Properties, Functionalization, and Applications of Carbon Nanohorns
-
N. Karousis, I. Suarez-Martinez, C. P. Ewels, and N. Tagmatarchis, “Structure, Properties, Functionalization, and Applications of Carbon Nanohorns,” Chem. Rev., 116, 4850 (2016).
-
(2016)
Chem. Rev.
, vol.116
, pp. 4850
-
-
Karousis, N.1
Suarez-Martinez, I.2
Ewels, C.P.3
Tagmatarchis, N.4
-
84
-
-
84898063491
-
60 conjugate
-
60 conjugate,” Chem. Sci., 5, 2072 (2014).
-
(2014)
Chem. Sci.
, vol.5
, pp. 2072
-
-
Vizuete, M.1
Gómez-Escalonilla, M.J.2
Fierro, J.L.G.3
Ohkubo, K.4
Fukuzumi, S.5
Yudasaka, M.6
Iijima, S.7
Nierengarten, J.-F.8
Langa, F.9
-
85
-
-
84954113730
-
Synthesis, characterization and photoinduced charge separation of carbon nanohorn-oligothienylenevinylene hybrids
-
M. Vizuete, M. J. Gómez-Escalonilla, M. Barrejón, J. L. G. Fierro, M. Zhang, M. Yudasaka, S. Iijima, P. Atienzar, H. García, and F. Langa, “Synthesis, characterization and photoinduced charge separation of carbon nanohorn-oligothienylenevinylene hybrids,” Phys. Chem. Chem. Phys., 18, 1828 (2016).
-
(2016)
Phys. Chem. Chem. Phys.
, vol.18
, pp. 1828
-
-
Vizuete, M.1
Gómez-Escalonilla, M.J.2
Barrejón, M.3
Fierro, J.L.G.4
Zhang, M.5
Yudasaka, M.6
Iijima, S.7
Atienzar, P.8
García, H.9
Langa, F.10
-
86
-
-
84969677453
-
Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications
-
V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, and R. Zboril, “Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications,” Chem. Rev., 116, 5464 (2016).
-
(2016)
Chem. Rev.
, vol.116
, pp. 5464
-
-
Georgakilas, V.1
Tiwari, J.N.2
Kemp, K.C.3
Perman, J.A.4
Bourlinos, A.B.5
Kim, K.S.6
Zboril, R.7
-
87
-
-
84904567313
-
60 Conjugate
-
60 Conjugate,” Chem. Commun., 50, 9053 (2014).
-
(2014)
Chem. Commun.
, vol.50
, pp. 9053
-
-
Barrejón, M.1
Vizuete, M.2
Gómez-Escalonilla, M.J.3
Fierro, J.L.G.4
Berlanga, I.5
Zamora, F.6
Abellán, G.7
Atienzar, P.8
Nierengarten, J.-F.9
García, H.10
Langa, F.11
-
88
-
-
84929207459
-
Photoinduced charge separation in ordered self-assemblies of perylenediimide-graphene oxide hybrid layers
-
M. Supur, K. Ohkubo, and S. Fukuzumi, “Photoinduced charge separation in ordered self-assemblies of perylenediimide-graphene oxide hybrid layers,” Chem. Commun., 50, 13359 (2014).
-
(2014)
Chem. Commun.
, vol.50
, pp. 13359
-
-
Supur, M.1
Ohkubo, K.2
Fukuzumi, S.3
-
89
-
-
84934970907
-
60 donor-acceptor composites for photoenergy conversion
-
60 donor-acceptor composites for photoenergy conversion,” Phys. Chem. Chem. Phys., 17, 15732 (2015).
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 15732
-
-
Supur, M.1
Kawashima, Y.2
Ohkubo, K.3
Sakai, H.4
Hasobe, T.5
Fukuzumi, S.6
-
90
-
-
84976578536
-
Fullerene grafted graphene oxide with effective charge transfer Interactions
-
R. Kumar, S. Khan, N. Gupta, S. Naqvi, K. Gaurav, C. Sharma, M. Kumar, P. Kumar, and S. Chand, “Fullerene grafted graphene oxide with effective charge transfer Interactions,” Carbon, 107, 765 (2016).
-
(2016)
Carbon
, vol.107
, pp. 765
-
-
Kumar, R.1
Khan, S.2
Gupta, N.3
Naqvi, S.4
Gaurav, K.5
Sharma, C.6
Kumar, M.7
Kumar, P.8
Chand, S.9
-
91
-
-
84870044888
-
Ultrafast charge separation in supramolecular tetrapyrrole-graphene hybrids
-
C. C. B. K., S. K. Das, K. Ohkubo, S. Fukuzumi, and F. D’Souza, “Ultrafast charge separation in supramolecular tetrapyrrole-graphene hybrids,” Chem. Commun., 48, 11859 (2012).
-
(2012)
Chem. Commun.
, vol.48
, pp. 11859
-
-
K, C.C.B.1
Das, S.K.2
Ohkubo, K.3
Fukuzumi, S.4
D’Souza, F.5
-
92
-
-
84925325096
-
Decorating graphene nanosheets with electron accepting pyridyl-phthalocyanines
-
L. Wibmer, L. M. O. Lourenço, A. Roth, G. Katsukis, M. G. P. M. S. Neves, J. A. S. Cavaleiro, J. P. C. Tomé, T. Torres, and D. M. Guldi, “Decorating graphene nanosheets with electron accepting pyridyl-phthalocyanines,” Nanoscale, 7, 5674 (2015).
-
(2015)
Nanoscale
, vol.7
, pp. 5674
-
-
Wibmer, L.1
Lourenço, L.M.O.2
Roth, A.3
Katsukis, G.4
Neves, M.G.P.M.S.5
Cavaleiro, J.A.S.6
Tomé, J.P.C.7
Torres, T.8
Guldi, D.M.9
-
93
-
-
84868195671
-
Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites
-
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites,” Science, 338, 643 (2012).
-
(2012)
Science
, vol.338
, pp. 643
-
-
Lee, M.M.1
Teuscher, J.2
Miyasaka, T.3
Murakami, T.N.4
Snaith, H.J.5
-
94
-
-
84992175884
-
Intriguing Optoelectronic Properties of Metal Halide Perovskites
-
J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing Optoelectronic Properties of Metal Halide Perovskites,” Chem. Rev., 116, 12956 (2016).
-
(2016)
Chem. Rev.
, vol.116
, pp. 12956
-
-
Manser, J.S.1
Christians, J.A.2
Kamat, P.V.3
-
96
-
-
84961775208
-
What Is Moving in Hybrid Halide Perovskite Solar Cells?
-
J. M. Frost and A. Walsh, “What Is Moving in Hybrid Halide Perovskite Solar Cells?,” Acc. Chem. Res., 49, 528 (2016).
-
(2016)
Acc. Chem. Res.
, vol.49
, pp. 528
-
-
Frost, J.M.1
Walsh, A.2
-
97
-
-
84890440911
-
-
accessed 1 April 2016
-
Research Cell Efficiency Records http://www.nrel.gov/ncpv (National Renewable Energy Laboratory, accessed 1 April 2016).
-
Research Cell Efficiency Records
-
-
-
98
-
-
84984704907
-
Research Update: Strategies for improving the stability of perovskite solar cells
-
S. N. Habisreutinger, D. P. McMeekin, H. J. Snaith, and R. J. Nicholas, “Research Update: Strategies for improving the stability of perovskite solar cells,” APL Mater., 4, 091503-1-15 (2016)
-
(2016)
APL Mater.
, vol.4
, pp. 0915031-09150315
-
-
Habisreutinger, S.N.1
McMeekin, D.P.2
Snaith, H.J.3
Nicholas, R.J.4
-
99
-
-
84988643052
-
Recent progress on stability issues of organic-inorganic hybrid lead perovskite-based solar cells
-
D. Li, P. Liao, X. Shai, W. Huang, S. Liu, H. Li, Y. Shena, and M. Wang, “Recent progress on stability issues of organic-inorganic hybrid lead perovskite-based solar cells,” RSC Adv., 6, 89356 (2016).
-
(2016)
RSC Adv.
, vol.6
, pp. 89356
-
-
Li, D.1
Liao, P.2
Shai, X.3
Huang, W.4
Liu, S.5
Li, H.6
Shena, Y.7
Wang, M.8
-
100
-
-
84991109400
-
Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells
-
T. Xu, L. Chen, Z. Guo, and T. Ma, “Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells,” Phys. Chem. Chem. Phys., 18, 27026 (2016).
-
(2016)
Phys. Chem. Chem. Phys.
, vol.18
, pp. 27026
-
-
Xu, T.1
Chen, L.2
Guo, Z.3
Ma, T.4
-
101
-
-
84994860026
-
Trapped charge-driven degradation of perovskite solar cells
-
N. Ahn, K. Kwak, M. S. Jang, H. Yoon, B. Y. Lee, J.-K. Lee, P. V. Pikhitsa, J. Byun, and M. Choi, “Trapped charge-driven degradation of perovskite solar cells,” Nat. Commun., 7, 13422/1 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 13422/1
-
-
Ahn, N.1
Kwak, K.2
Jang, M.S.3
Yoon, H.4
Lee, B.Y.5
Lee, J.-K.6
Pikhitsa, P.V.7
Byun, J.8
Choi, M.9
-
102
-
-
84953377503
-
Stability of perovskite solar cells,” Solar Energy Mater
-
D. Wang, M. Wright, N. K. Elumalai, and A. Uddin, “Stability of perovskite solar cells,” Solar Energy Mater. Solar Cells, 147, 255 (2016).
-
(2016)
Solar Cells
, vol.147
, pp. 255
-
-
Wang, D.1
Wright, M.2
Elumalai, N.K.3
Uddin, A.4
-
103
-
-
84970005791
-
Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells
-
W. Yan, S. Ye, Y. Li, W. Sun, H. Rao, Z. Liu, Z. Bian, and C. Huang, “Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells,” Adv. Energy Mater., 6, 1600474/1 (2016).
-
(2016)
Adv. Energy Mater.
, vol.6
, pp. 1600474/1
-
-
Yan, W.1
Ye, S.2
Li, Y.3
Sun, W.4
Rao, H.5
Liu, Z.6
Bian, Z.7
Huang, C.8
-
104
-
-
84894517685
-
Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells
-
E. J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells,” J. Phys. Chem. Lett., 5 , 680 (2014).
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 680
-
-
Juarez-Perez, E.J.1
Wuβler, M.2
Fabregat-Santiago, F.3
Lakus-Wollny, K.4
Mankel, E.5
Mayer, T.6
Jaegermann, W.7
Mora-Sero, I.8
-
105
-
-
84929224444
-
Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes
-
J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes,” Nat. Commun. 6 (2015).
-
(2015)
Nat. Commun.
, pp. 6
-
-
Xu, J.1
Buin, A.2
Ip, A.H.3
Li, W.4
Voznyy, O.5
Comin, R.6
Yuan, M.7
Jeon, S.8
Ning, Z.9
McDowell, J.J.10
Kanjanaboos, P.11
Sun, J.-P.12
Lan, X.13
Quan, L.N.14
Kim, D.H.15
Hill, I.G.16
Maksymovych, P.17
Sargent, E.H.18
-
106
-
-
84950276943
-
Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells
-
Y. Li, Y. Zhao, Q. Chen, Y. M. Yang, Y. Liu, Z. Hong, Z. Liu, Y.-T. Hsieh, L. Meng, Y. Li, and Y. Yang, “Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells,” J. Am. Chem. Soc., 137, 15540 (2015).
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 15540
-
-
Li, Y.1
Zhao, Y.2
Chen, Q.3
Yang, Y.M.4
Liu, Y.5
Hong, Z.6
Liu, Z.7
Hsieh, Y.-T.8
Meng, L.9
Li, Y.10
Yang, Y.11
-
107
-
-
84996848433
-
Analysis of the Hysteresis Behavior of Perovskite Solar Cells with Interfacial Fullerene Self-Assembled Monolayers
-
M. Valles-Pelarda, B. C. Hames, I. García-Benito, O. Almora, A. Molina-Ontoria, R. S. Sánchez, G. Garcia-Belmonte, N. Martín, and I. Mora-Sero, “Analysis of the Hysteresis Behavior of Perovskite Solar Cells with Interfacial Fullerene Self-Assembled Monolayers,” J. Phys. Chem. Lett., 7, 4622−4628 (2016).
-
(2016)
J. Phys. Chem. Lett.
, vol.7
, pp. 4622-4628
-
-
Valles-Pelarda, M.1
Hames, B.C.2
García-Benito, I.3
Almora, O.4
Molina-Ontoria, A.5
Sánchez, R.S.6
Garcia-Belmonte, G.7
Martín, N.8
Mora-Sero, I.9
-
108
-
-
84986190540
-
A PCBM Electron Transport Layer Containing Small Amounts of Dual Polymer Additives that Enables Enhanced Perovskite Solar Cell Performance
-
Z. Zhu, Q. Xue, H. He, K. Jiang, Z. Hu, Y. Bai, T. Zhang, S. Xiao, K. Gundogdu, B. R. Gautam, H. Ade, F. Huang, K. S. Wong, H.-L. Yip, S. Yang, and H. Yan, “A PCBM Electron Transport Layer Containing Small Amounts of Dual Polymer Additives that Enables Enhanced Perovskite Solar Cell Performance,” Adv. Sci., 3, 1500353/1 (2016).
-
(2016)
Adv. Sci.
, vol.3
, pp. 1500353/1
-
-
Zhu, Z.1
Xue, Q.2
He, H.3
Jiang, K.4
Hu, Z.5
Bai, Y.6
Zhang, T.7
Xiao, S.8
Gundogdu, K.9
Gautam, B.R.10
Ade, H.11
Huang, F.12
Wong, K.S.13
Yip, H.-L.14
Yang, S.15
Yan, H.16
-
109
-
-
84932642060
-
Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer
-
F. Xia, Q. Wu, P. Zhou, Y. Li, X. Chen, Q. Liu, J. Zhu, S. Dai, Y. Lu, and S. Yang, “Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer,” ACS Appl. Mater. Interfaces, 7, 13659 (2015).
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 13659
-
-
Xia, F.1
Wu, Q.2
Zhou, P.3
Li, Y.4
Chen, X.5
Liu, Q.6
Zhu, J.7
Dai, S.8
Lu, Y.9
Yang, S.10
-
110
-
-
84988575975
-
Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite Photovoltaics
-
H.-K. Lin, Y.-W. Su, H.-C. Chen, Y.-J. Huang, and K.-H. Wei, “Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite Photovoltaics,” ACS Appl. Mater. Interfaces, 8, 24603 (2016).
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 24603
-
-
Lin, H.-K.1
Su, Y.-W.2
Chen, H.-C.3
Huang, Y.-J.4
Wei, K.-H.5
-
111
-
-
84997674000
-
High-performance printable hybrid perovskite solar cells with an easily accessible n-doped fullerene as a cathode interfacial layer
-
C.-Y. Chang, B.-C. Tsai, Y.-C. Hsiao, Y.-C. Huang, and C.-S. Tsao, “High-performance printable hybrid perovskite solar cells with an easily accessible n-doped fullerene as a cathode interfacial layer,” Phys. Chem. Chem. Phys., 18, 31836 (2016).
-
(2016)
Phys. Chem. Chem. Phys.
, vol.18
, pp. 31836
-
-
Chang, C.-Y.1
Tsai, B.-C.2
Hsiao, Y.-C.3
Huang, Y.-C.4
Tsao, C.-S.5
-
112
-
-
84999232269
-
Efficient promotion of charge separation and suppression of charge recombination by blending PCBM and its dimer as electron transport layer in inverted perovskite solar cells
-
J. Han, H.-Y. Wang, Y. Wang, M. Yu, S. Yuan, P. Sun, Y. Qin, Z.-X. Guo, J.-P. Zhang, and X.-C. Ai, “Efficient promotion of charge separation and suppression of charge recombination by blending PCBM and its dimer as electron transport layer in inverted perovskite solar cells,” RSC Adv., 6, 112512 (2016).
-
(2016)
RSC Adv.
, vol.6
, pp. 112512
-
-
Han, J.1
Wang, H.-Y.2
Wang, Y.3
Yu, M.4
Yuan, S.5
Sun, P.6
Qin, Y.7
Guo, Z.-X.8
Zhang, J.-P.9
Ai, X.-C.10
-
113
-
-
84958062772
-
Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells
-
K. Aitola, K. Sveinbjörnsson, J.-P. Correa-Baena, A. Kaskela, A. Abate, Y. Tian, E. M. J. Johansson, M. Grätzel, E. I. Kauppinen, A. Hagfeldta, and G. Boschloo, “Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells,” Energy Environ. Sci., 9, 461 (2016).
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 461
-
-
Aitola, K.1
Sveinbjörnsson, K.2
Correa-Baena, J.-P.3
Kaskela, A.4
Abate, A.5
Tian, Y.6
Johansson, E.M.J.7
Grätzel, M.8
Kauppinen, E.I.9
Hagfeldta, A.10
Boschloo, G.11
-
114
-
-
84962310341
-
14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes
-
H. Li, K. Cao, J. Cui, S. Liu, X. Qiao, Y. Shen, and M. Wan, “14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes,” Nanoscale, 8, 6379 (2016).
-
(2016)
Nanoscale
, vol.8
, pp. 6379
-
-
Li, H.1
Cao, K.2
Cui, J.3
Liu, S.4
Qiao, X.5
Shen, Y.6
Wan, M.7
-
115
-
-
84992186941
-
Covalently Functionalized SWCNTs as Tailored p-Type Dopants for Perovskite Solar Cells
-
T. Miletić, E. Pavoni, V. Trifiletti, A. Rizzo, A. Listorti, S. Colella, N. Armaroli, and D. Bonifazi, “Covalently Functionalized SWCNTs as Tailored p-Type Dopants for Perovskite Solar Cells,” ACS Appl. Mater. Interfaces, 8, 27966 (2016).
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 27966
-
-
Miletić, T.1
Pavoni, E.2
Trifiletti, V.3
Rizzo, A.4
Listorti, A.5
Colella, S.6
Armaroli, N.7
Bonifazi, D.8
-
116
-
-
84966277466
-
Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells
-
Y. Zhang, L. Tan, Q. Fu, L. Chen, T. Ji, X. Hua, and Y. Chen, “Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells,” Chem. Commun., 52, 5674 (2016).
-
(2016)
Chem. Commun.
, vol.52
, pp. 5674
-
-
Zhang, Y.1
Tan, L.2
Fu, Q.3
Chen, L.4
Ji, T.5
Hua, X.6
Chen, Y.7
-
117
-
-
84948844714
-
Hysteresis-free multi-walled carbon nanotube based perovskite solar cells with a high fill factor
-
Z. Wei, H. Chen, K. Yan, X. Zheng, and S. Yang, “Hysteresis-free multi-walled carbon nanotube based perovskite solar cells with a high fill factor,” J. Mater. Chem. A, 3, 24226 (2015).
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 24226
-
-
Wei, Z.1
Chen, H.2
Yan, K.3
Zheng, X.4
Yang, S.5
-
118
-
-
84987642379
-
Boosting Perovskite Solar Cells Performance and Stability through Doping a Poly-3(hexylthiophene) Hole Transporting Material with Organic Functionalized Carbon Nanostructures
-
T. Gatti, S. Casaluci, M. Prato, M. Salerno, F. D. Stasio, A. Ansaldo, E. Menna, A. D. Carlo, and F. Bonaccorso, “Boosting Perovskite Solar Cells Performance and Stability through Doping a Poly-3(hexylthiophene) Hole Transporting Material with Organic Functionalized Carbon Nanostructures,” Adv. Funct. Mater., 26, 7443 (2016).
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 7443
-
-
Gatti, T.1
Casaluci, S.2
Prato, M.3
Salerno, M.4
Stasio, F.D.5
Ansaldo, A.6
Menna, E.7
Carlo, A.D.8
Bonaccorso, F.9
-
119
-
-
84957565749
-
Charge Transfer Dynamics between Carbon Nanotubes and Hybrid Organic Metal Halide Perovskite Films
-
P. Schulz, A.-M. Dowgiallo, M. Yang, K. Zhu, J. L. Blackburn, and J. J. Berry, “Charge Transfer Dynamics between Carbon Nanotubes and Hybrid Organic Metal Halide Perovskite Films,” J. Phys. Chem. Lett., 7, 418 (2016).
-
(2016)
J. Phys. Chem. Lett.
, vol.7
, pp. 418
-
-
Schulz, P.1
Dowgiallo, A.-M.2
Yang, M.3
Zhu, K.4
Blackburn, J.L.5
Berry, J.J.6
-
120
-
-
84986612643
-
Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers
-
M. Bag, L. A. Renna, S. P. Jeong, X. Han, C. L. Cutting, D. Maroudas, and D. Venkataraman, “Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers,” Chem. Phys. Lett., 662, 35 (2016).
-
(2016)
Chem. Phys. Lett.
, vol.662
, pp. 35
-
-
Bag, M.1
Renna, L.A.2
Jeong, S.P.3
Han, X.4
Cutting, C.L.5
Maroudas, D.6
Venkataraman, D.7
-
121
-
-
84992690558
-
Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells
-
X. Huang, H. Guo, J. Yang, K. Wang, X. Niu, and X. Liu, “Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells,” Organic Electron., 39, 288 (2016).
-
(2016)
Organic Electron.
, vol.39
, pp. 288
-
-
Huang, X.1
Guo, H.2
Yang, J.3
Wang, K.4
Niu, X.5
Liu, X.6
-
122
-
-
84968861361
-
Graphene in perovskite solar cells: Device design, characterization and implementation
-
M. Acik and S. B. Darling, “Graphene in perovskite solar cells: device design, characterization and implementation,” J. Mater. Chem. A, 4, 6185 (2016).
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 6185
-
-
Acik, M.1
Darling, S.B.2
|