메뉴 건너뛰기




Volumn 275, Issue , 2018, Pages 237-246

Margin & diversity based ordering ensemble pruning

Author keywords

Ensemble diversity; Ensemble pruning; Example margin

Indexed keywords

NEURAL NETWORKS;

EID: 85021887039     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2017.06.052     Document Type: Article
Times cited : (78)

References (44)
  • 2
    • 0002900451 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Proceedings of the 1st International Workshop on Multiple Classifier Systems 200
    • T. G. Dietterich, Ensemble methods in machine learning, in: Proceedings of the 1st International Workshop on Multiple Classifier Systems 200, pp. 1–15.
    • Dietterich, T.G.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Mach. Learn. 24:2 (1996), 123–140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., Schapire, R.E., A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55:1 (1997), 119–139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D.H., Stacked generalization. Neural Netw. 5:2 (1992), 241–259.
    • (1992) Neural Netw. , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 10
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for-multiple classifier fusion: an experimental comparison
    • Kuncheva, L.I., Bezdek, J.C., Duin, R.P., Decision templates for-multiple classifier fusion: an experimental comparison. Pattern Recognit. 34:2 (2001), 299–314.
    • (2001) Pattern Recognit. , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.3
  • 11
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu, Y., Yao, X., Ensemble learning via negative correlation. Neural Netw. 12:10 (1999), 1399–1404.
    • (1999) Neural Netw. , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 12
    • 85055384819 scopus 로고    scopus 로고
    • Ensemble Methods Foundations and Algorithms
    • Boca Raton, Florida: CRC Press, Taylor & Francis
    • Zhou, Z.H., Ensemble Methods Foundations and Algorithms. 2012, Boca Raton, Florida: CRC Press, Taylor & Francis, 67–97.
    • (2012) , pp. 67-97
    • Zhou, Z.H.1
  • 14
    • 84906815136 scopus 로고    scopus 로고
    • Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction
    • Ma, Z., Dai, Q., Liu, N., Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction. Expert Syst. Appl. 42:1 (2015), 280–292.
    • (2015) Expert Syst. Appl. , vol.42 , Issue.1 , pp. 280-292
    • Ma, Z.1    Dai, Q.2    Liu, N.3
  • 15
    • 84931090810 scopus 로고    scopus 로고
    • Learning concept-drifting data streams with random ensemble decision trees
    • Li, P.P., Wu, X., Hu, X., Wang, H., Learning concept-drifting data streams with random ensemble decision trees. Neurocomputing 166 (2015), 68–83.
    • (2015) Neurocomputing , vol.166 , pp. 68-83
    • Li, P.P.1    Wu, X.2    Hu, X.3    Wang, H.4
  • 16
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou, Z., Wu, J., Tang, W., Ensembling neural networks: many could be better than all. Artif. Intell. 137:1–2 (2002), 239–263.
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.1    Wu, J.2    Tang, W.3
  • 18
    • 10444241978 scopus 로고    scopus 로고
    • Ensemble diversity measures and their application to thinning
    • Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P., Ensemble diversity measures and their application to thinning. Inf. Fusion 6:1 (2005), 49–62.
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 49-62
    • Banfield, R.E.1    Hall, L.O.2    Bowyer, K.W.3    Kegelmeyer, W.P.4
  • 21
    • 78049528785 scopus 로고    scopus 로고
    • An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
    • Partalas, I., Tsoumakas, G., Vlahavas, I.P., An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Mach. Learn. 81:3 (2010), 257–282.
    • (2010) Mach. Learn. , vol.81 , Issue.3 , pp. 257-282
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.P.3
  • 23
    • 84873737900 scopus 로고    scopus 로고
    • Margin-based ordered aggregation for ensemble pruning
    • Guo, L., Boukir, S., Margin-based ordered aggregation for ensemble pruning. Pattern Recognit. Lett. 34:6 (2013), 603–609.
    • (2013) Pattern Recognit. Lett. , vol.34 , Issue.6 , pp. 603-609
    • Guo, L.1    Boukir, S.2
  • 24
    • 84922661095 scopus 로고    scopus 로고
    • Dynamic ensemble pruning based on multi-label classification
    • Markatopoulou, F., Tsoumakas, G., Vlahavas, I.P., Dynamic ensemble pruning based on multi-label classification. Neurocomputing 150 (2015), 501–512.
    • (2015) Neurocomputing , vol.150 , pp. 501-512
    • Markatopoulou, F.1    Tsoumakas, G.2    Vlahavas, I.P.3
  • 26
    • 84922630377 scopus 로고    scopus 로고
    • Confidence ratio affinity propagation in ensemble selection of neural network classifiers for distributed privacy-preserving data mining
    • Kokkinos, Y., Margaritis, K.G., Confidence ratio affinity propagation in ensemble selection of neural network classifiers for distributed privacy-preserving data mining. Neurocomputing 150 (2015), 513–528.
    • (2015) Neurocomputing , vol.150 , pp. 513-528
    • Kokkinos, Y.1    Margaritis, K.G.2
  • 27
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • Schapire, R.E., Freund, Y., Barlett, P., Lee, W.S., Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26:5 (1998), 1651–1686.
    • (1998) Ann. Stat. , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Barlett, P.3    Lee, W.S.4
  • 28
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho, T.K., The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20:8 (1998), 832–844.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 30
    • 84881447722 scopus 로고    scopus 로고
    • On the doubt about margin explanation of boosting
    • Gao, W., Zhou, Z.H., On the doubt about margin explanation of boosting. Artif. Intell. 203 (2013), 1–18.
    • (2013) Artif. Intell. , vol.203 , pp. 1-18
    • Gao, W.1    Zhou, Z.H.2
  • 31
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva, L.I., Whitaker, C.J., Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51:2 (2003), 181–207.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 32
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Zhang, Y., Burer, S., Street, W.N., Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 7 (2006), 1315–1338.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3
  • 36
    • 0037337904 scopus 로고    scopus 로고
    • Clustering ensembles of neural network models
    • Bakker, B., Heskes, T., Clustering ensembles of neural network models. Neural Netw. 16:2 (2003), 261–269.
    • (2003) Neural Netw. , vol.16 , Issue.2 , pp. 261-269
    • Bakker, B.1    Heskes, T.2
  • 39
    • 67749105990 scopus 로고    scopus 로고
    • Predictive ensemble pruning by expectation propagation
    • Chen, H., Tino, P., Yao, X., Predictive ensemble pruning by expectation propagation. IEEE Trans. Knowl. Data Eng. 21:7 (2009), 999–1013.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.7 , pp. 999-1013
    • Chen, H.1    Tino, P.2    Yao, X.3
  • 41
    • 85040674206 scopus 로고    scopus 로고
    • UCI machine learning repository. URL
    • A. Asuncion, and D. Newman, UCI machine learning repository, 2007. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 42
    • 0003500248 scopus 로고
    • C4.5: programs for Machine Learning
    • Morgan Kaufmann San Francisco, CA, USA
    • Quinlan, J.R., C4.5: programs for Machine Learning. 1993, Morgan Kaufmann, San Francisco, CA, USA.
    • (1993)
    • Quinlan, J.R.1
  • 43
    • 0003957032 scopus 로고    scopus 로고
    • Data Mining: practical Machine Learning Tools and Techniques
    • Morgan Kaufmann San Francisco
    • Witten, I.H., Frank, E., Data Mining: practical Machine Learning Tools and Techniques. 2005, Morgan Kaufmann, San Francisco.
    • (2005)
    • Witten, I.H.1    Frank, E.2
  • 44
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar, J., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 6 (2006), 1–30.
    • (2006) J. Mach. Learn. Res. , vol.6 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.