-
1
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D., Top 10 algorithms in data mining. Knowl. Inf. Syst. 14:1 (2008), 1–37.
-
(2008)
Knowl. Inf. Syst.
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
Zhou, Z.H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
-
2
-
-
0002900451
-
Ensemble methods in machine learning
-
Proceedings of the 1st International Workshop on Multiple Classifier Systems 200
-
T. G. Dietterich, Ensemble methods in machine learning, in: Proceedings of the 1st International Workshop on Multiple Classifier Systems 200, pp. 1–15.
-
-
-
Dietterich, T.G.1
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L., Bagging predictors. Mach. Learn. 24:2 (1996), 123–140.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., Schapire, R.E., A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55:1 (1997), 119–139.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
5
-
-
0035478854
-
Random forests
-
Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
52249099075
-
Spectrum of variable-random trees
-
Liu, F.T., Ting, K.M., Yu, Y., Zhou, Z.H., Spectrum of variable-random trees. J. Artif. Intell. Res. 32:1 (2008), 355–384.
-
(2008)
J. Artif. Intell. Res.
, vol.32
, Issue.1
, pp. 355-384
-
-
Liu, F.T.1
Ting, K.M.2
Yu, Y.3
Zhou, Z.H.4
-
7
-
-
33750095186
-
Rotation forest: a new classifier ensemble method
-
Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J., Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28:10 (2006), 1619–1630.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodriguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
8
-
-
57749179481
-
Constraint projections for ensemble learning
-
Zhang, D., Chen, S., Zhou, Z., Yang, Q., Constraint projections for ensemble learning. Proceedings of the 23rd AAAI Conference on Artificial Intelligence, 2008, 758–763.
-
(2008)
Proceedings of the 23rd AAAI Conference on Artificial Intelligence
, pp. 758-763
-
-
Zhang, D.1
Chen, S.2
Zhou, Z.3
Yang, Q.4
-
9
-
-
0026692226
-
Stacked generalization
-
Wolpert, D.H., Stacked generalization. Neural Netw. 5:2 (1992), 241–259.
-
(1992)
Neural Netw.
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
-
10
-
-
0034830461
-
Decision templates for-multiple classifier fusion: an experimental comparison
-
Kuncheva, L.I., Bezdek, J.C., Duin, R.P., Decision templates for-multiple classifier fusion: an experimental comparison. Pattern Recognit. 34:2 (2001), 299–314.
-
(2001)
Pattern Recognit.
, vol.34
, Issue.2
, pp. 299-314
-
-
Kuncheva, L.I.1
Bezdek, J.C.2
Duin, R.P.3
-
11
-
-
0033485370
-
Ensemble learning via negative correlation
-
Liu, Y., Yao, X., Ensemble learning via negative correlation. Neural Netw. 12:10 (1999), 1399–1404.
-
(1999)
Neural Netw.
, vol.12
, Issue.10
, pp. 1399-1404
-
-
Liu, Y.1
Yao, X.2
-
12
-
-
85055384819
-
Ensemble Methods Foundations and Algorithms
-
Boca Raton, Florida: CRC Press, Taylor & Francis
-
Zhou, Z.H., Ensemble Methods Foundations and Algorithms. 2012, Boca Raton, Florida: CRC Press, Taylor & Francis, 67–97.
-
(2012)
, pp. 67-97
-
-
Zhou, Z.H.1
-
13
-
-
84873720872
-
-
Phd thesis, University of Bordeaux 3 France
-
Guo, L., Margin framework for ensemble classifiers, Application to remote sensing data, 2011, Phd thesis, University of Bordeaux 3, France.
-
(2011)
Margin framework for ensemble classifiers, Application to remote sensing data
-
-
Guo, L.1
-
14
-
-
84906815136
-
Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction
-
Ma, Z., Dai, Q., Liu, N., Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction. Expert Syst. Appl. 42:1 (2015), 280–292.
-
(2015)
Expert Syst. Appl.
, vol.42
, Issue.1
, pp. 280-292
-
-
Ma, Z.1
Dai, Q.2
Liu, N.3
-
15
-
-
84931090810
-
Learning concept-drifting data streams with random ensemble decision trees
-
Li, P.P., Wu, X., Hu, X., Wang, H., Learning concept-drifting data streams with random ensemble decision trees. Neurocomputing 166 (2015), 68–83.
-
(2015)
Neurocomputing
, vol.166
, pp. 68-83
-
-
Li, P.P.1
Wu, X.2
Hu, X.3
Wang, H.4
-
16
-
-
0036567392
-
Ensembling neural networks: many could be better than all
-
Zhou, Z., Wu, J., Tang, W., Ensembling neural networks: many could be better than all. Artif. Intell. 137:1–2 (2002), 239–263.
-
(2002)
Artif. Intell.
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.1
Wu, J.2
Tang, W.3
-
18
-
-
10444241978
-
Ensemble diversity measures and their application to thinning
-
Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P., Ensemble diversity measures and their application to thinning. Inf. Fusion 6:1 (2005), 49–62.
-
(2005)
Inf. Fusion
, vol.6
, Issue.1
, pp. 49-62
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
19
-
-
85052001384
-
Focused ensemble selection: A diversity-based method for greedy ensemble selection
-
Partalas, I., Tsoumakas, G., Vlahavas, I.P., Focused ensemble selection: A diversity-based method for greedy ensemble selection. Proceeding of the 18th European Conference on Artificial Intelligence, 2008, 117–121.
-
(2008)
Proceeding of the 18th European Conference on Artificial Intelligence
, pp. 117-121
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.P.3
-
20
-
-
60349092310
-
An analysis of ensemble pruning techniques based on ordered aggregation
-
Maríínez-Munoz, G., Hernández-Lobato, D., Suárez, A., An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans. Pattern Anal. Mach. Intell. 31 (2009), 245–259.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, pp. 245-259
-
-
Maríínez-Munoz, G.1
Hernández-Lobato, D.2
Suárez, A.3
-
21
-
-
78049528785
-
An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
-
Partalas, I., Tsoumakas, G., Vlahavas, I.P., An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Mach. Learn. 81:3 (2010), 257–282.
-
(2010)
Mach. Learn.
, vol.81
, Issue.3
, pp. 257-282
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.P.3
-
22
-
-
77956210291
-
Ensemble pruning via individual contribution ordering
-
Lu, Z.Y., Wu, X.D., Zhu, X.Q., Bongard, J., Ensemble pruning via individual contribution ordering. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, 871–880.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 871-880
-
-
Lu, Z.Y.1
Wu, X.D.2
Zhu, X.Q.3
Bongard, J.4
-
23
-
-
84873737900
-
Margin-based ordered aggregation for ensemble pruning
-
Guo, L., Boukir, S., Margin-based ordered aggregation for ensemble pruning. Pattern Recognit. Lett. 34:6 (2013), 603–609.
-
(2013)
Pattern Recognit. Lett.
, vol.34
, Issue.6
, pp. 603-609
-
-
Guo, L.1
Boukir, S.2
-
24
-
-
84922661095
-
Dynamic ensemble pruning based on multi-label classification
-
Markatopoulou, F., Tsoumakas, G., Vlahavas, I.P., Dynamic ensemble pruning based on multi-label classification. Neurocomputing 150 (2015), 501–512.
-
(2015)
Neurocomputing
, vol.150
, pp. 501-512
-
-
Markatopoulou, F.1
Tsoumakas, G.2
Vlahavas, I.P.3
-
25
-
-
84949912487
-
Pareto ensemble pruning
-
Qian, C., Yu, Y., Zhou, Z.H., Pareto ensemble pruning. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, 2935–2941.
-
(2015)
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
, pp. 2935-2941
-
-
Qian, C.1
Yu, Y.2
Zhou, Z.H.3
-
26
-
-
84922630377
-
Confidence ratio affinity propagation in ensemble selection of neural network classifiers for distributed privacy-preserving data mining
-
Kokkinos, Y., Margaritis, K.G., Confidence ratio affinity propagation in ensemble selection of neural network classifiers for distributed privacy-preserving data mining. Neurocomputing 150 (2015), 513–528.
-
(2015)
Neurocomputing
, vol.150
, pp. 513-528
-
-
Kokkinos, Y.1
Margaritis, K.G.2
-
27
-
-
0032280519
-
Boosting the margin: a new explanation for the effectiveness of voting methods
-
Schapire, R.E., Freund, Y., Barlett, P., Lee, W.S., Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26:5 (1998), 1651–1686.
-
(1998)
Ann. Stat.
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Barlett, P.3
Lee, W.S.4
-
28
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Ho, T.K., The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20:8 (1998), 832–844.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
30
-
-
84881447722
-
On the doubt about margin explanation of boosting
-
Gao, W., Zhou, Z.H., On the doubt about margin explanation of boosting. Artif. Intell. 203 (2013), 1–18.
-
(2013)
Artif. Intell.
, vol.203
, pp. 1-18
-
-
Gao, W.1
Zhou, Z.H.2
-
31
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva, L.I., Whitaker, C.J., Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51:2 (2003), 181–207.
-
(2003)
Mach. Learn.
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
32
-
-
33745794076
-
Ensemble pruning via semi-definite programming
-
Zhang, Y., Burer, S., Street, W.N., Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 7 (2006), 1315–1338.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1315-1338
-
-
Zhang, Y.1
Burer, S.2
Street, W.N.3
-
35
-
-
0342838353
-
Design of effective multiple classifier systems by clustering of classifiers
-
Giacinto, G., Roli, F., Fumera, G., Design of effective multiple classifier systems by clustering of classifiers. Proceedings of the 15th International Conference on Pattern Recognition, 2000, 160–163.
-
(2000)
Proceedings of the 15th International Conference on Pattern Recognition
, pp. 160-163
-
-
Giacinto, G.1
Roli, F.2
Fumera, G.3
-
36
-
-
0037337904
-
Clustering ensembles of neural network models
-
Bakker, B., Heskes, T., Clustering ensembles of neural network models. Neural Netw. 16:2 (2003), 261–269.
-
(2003)
Neural Netw.
, vol.16
, Issue.2
, pp. 261-269
-
-
Bakker, B.1
Heskes, T.2
-
38
-
-
40949161246
-
A probabilistic ensemble pruning algorithm
-
Chen, H., Tino, P., Yao, X., A probabilistic ensemble pruning algorithm. Proceedings of the 6th IEEE International Conference on Data Mining-Workshops, 2006, 878–882.
-
(2006)
Proceedings of the 6th IEEE International Conference on Data Mining-Workshops
, pp. 878-882
-
-
Chen, H.1
Tino, P.2
Yao, X.3
-
39
-
-
67749105990
-
Predictive ensemble pruning by expectation propagation
-
Chen, H., Tino, P., Yao, X., Predictive ensemble pruning by expectation propagation. IEEE Trans. Knowl. Data Eng. 21:7 (2009), 999–1013.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.7
, pp. 999-1013
-
-
Chen, H.1
Tino, P.2
Yao, X.3
-
40
-
-
60349092310
-
An analysis of ensemble pruning techniques based on ordered aggregation
-
Martínez-Muñoz, G., Hernández-Lobato, D., Suárez, A., An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans. Pattern Anal. Mach. Intell. 31:2 (2009), 245–259.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.2
, pp. 245-259
-
-
Martínez-Muñoz, G.1
Hernández-Lobato, D.2
Suárez, A.3
-
41
-
-
85040674206
-
-
UCI machine learning repository. URL
-
A. Asuncion, and D. Newman, UCI machine learning repository, 2007. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(2007)
-
-
Asuncion, A.1
Newman, D.2
-
42
-
-
0003500248
-
C4.5: programs for Machine Learning
-
Morgan Kaufmann San Francisco, CA, USA
-
Quinlan, J.R., C4.5: programs for Machine Learning. 1993, Morgan Kaufmann, San Francisco, CA, USA.
-
(1993)
-
-
Quinlan, J.R.1
-
43
-
-
0003957032
-
Data Mining: practical Machine Learning Tools and Techniques
-
Morgan Kaufmann San Francisco
-
Witten, I.H., Frank, E., Data Mining: practical Machine Learning Tools and Techniques. 2005, Morgan Kaufmann, San Francisco.
-
(2005)
-
-
Witten, I.H.1
Frank, E.2
-
44
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar, J., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 6 (2006), 1–30.
-
(2006)
J. Mach. Learn. Res.
, vol.6
, pp. 1-30
-
-
Demsar, J.1
|