메뉴 건너뛰기




Volumn 166, Issue , 2015, Pages 68-83

Learning concept-drifting data streams with random ensemble decision trees

Author keywords

Concept drift; Data streams; Noisy data; Random decision tree

Indexed keywords

DECISION TREES; TREES (MATHEMATICS);

EID: 84931090810     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.04.024     Document Type: Article
Times cited : (67)

References (63)
  • 3
    • 0002139432 scopus 로고    scopus 로고
    • Sprint: a scalable parallel classifier for data mining
    • J. Shafer, R. Agrawal, M. Mehta, Sprint: a scalable parallel classifier for data mining, in: Proceedings of VLDB'96, 1996, pp. 544-555.
    • (1996) Proceedings of VLDB'96 , pp. 544-555
    • Shafer, J.1    Agrawal, R.2    Mehta, M.3
  • 4
    • 33750313729 scopus 로고    scopus 로고
    • Is random model better? On its accuracy and efficiency
    • W. Fan, H. Wang, P.S. Yu, S. Ma, Is random model better? On its accuracy and efficiency, in: Proceedings of ICDM'03, 2003, pp. 51-58.
    • (2003) Proceedings of ICDM'03 , pp. 51-58
    • Fan, W.1    Wang, H.2    Yu, P.S.3    Ma, S.4
  • 6
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (SEA) for large-scale classification
    • W.N. Street, A streaming ensemble algorithm (SEA) for large-scale classification, in: Proceedings of KDD'01, 2001, pp. 377-382.
    • (2001) Proceedings of KDD'01 , pp. 377-382
    • Street, W.N.1
  • 7
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P.S. Yu, J. Han, Mining concept-drifting data streams using ensemble classifiers, in: Proceedings of KDD'03, 2003, pp. 226-235.
    • (2003) Proceedings of KDD'03 , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 9
    • 31844453033 scopus 로고    scopus 로고
    • Using additive expert ensembles to cope with concept drift
    • J.Z. Kolter, M.A. Maloof, Using additive expert ensembles to cope with concept drift, in: Proceedings of ICML'05, 2005, pp. 449-456.
    • (2005) Proceedings of ICML'05 , pp. 449-456
    • Kolter, J.Z.1    Maloof, M.A.2
  • 10
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: an ensemble method for drifting concepts
    • K.J. Zico, M.A. Maloof, Dynamic weighted majority: an ensemble method for drifting concepts, J. Mach. Learn. Res. 8 (2007) 2755-2790.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 2755-2790
    • Zico, K.J.1    Maloof, M.A.2
  • 13
    • 41849096368 scopus 로고    scopus 로고
    • Boosting classifiers for drifting concepts
    • Scholz M., Klinkenberg R. Boosting classifiers for drifting concepts. Intell. Data Anal. 2007, 11:3-28.
    • (2007) Intell. Data Anal. , vol.11 , pp. 3-28
    • Scholz, M.1    Klinkenberg, R.2
  • 15
    • 79956323714 scopus 로고    scopus 로고
    • Fast perceptron decision tree learning from evolving data streams
    • A. Bifet, G. Holmes, B. Pfahringer, E. Frank, Fast perceptron decision tree learning from evolving data streams, in: Proceedings of PAKDD'10, 2010, pp. 299-310.
    • (2010) Proceedings of PAKDD'10 , pp. 299-310
    • Bifet, A.1    Holmes, G.2    Pfahringer, B.3    Frank, E.4
  • 17
    • 84863595229 scopus 로고    scopus 로고
    • Learning decision rules from data streams
    • J. Gama, P. Kosina, Learning decision rules from data streams, in: Proceedings of IJCAI'11, 2011, pp. 1255-1260.
    • (2011) Proceedings of IJCAI'11 , pp. 1255-1260
    • Gama, J.1    Kosina, P.2
  • 20
    • 84919495777 scopus 로고    scopus 로고
    • Fixed-size ensemble classifier system evolutionarily adapted to a recurring context with an unlimited pool of classifiers
    • Jackowski K. Fixed-size ensemble classifier system evolutionarily adapted to a recurring context with an unlimited pool of classifiers. Pattern Analysis and Applications 2013, 1-16. 10.1007/s10044-013-0318-x.
    • (2013) Pattern Analysis and Applications , pp. 1-16
    • Jackowski, K.1
  • 21
    • 85136029579 scopus 로고    scopus 로고
    • Streamminer: a classifier ensemble-based engine to mine concept-drifting data streams
    • W. Fan, Streamminer: a classifier ensemble-based engine to mine concept-drifting data streams, in: Proceedings of VLDB'04, 2004, pp. 1257-1260.
    • (2004) Proceedings of VLDB'04 , pp. 1257-1260
    • Fan, W.1
  • 23
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 24
    • 52949102581 scopus 로고    scopus 로고
    • Classifying evolving data streams using dynamic streaming random forests
    • H. Abdulsalam, D.B. Skillicorn, P. Martin, Classifying evolving data streams using dynamic streaming random forests, in: Proceedings of DEXA'08, 2008, pp. 643-651.
    • (2008) Proceedings of DEXA'08 , pp. 643-651
    • Abdulsalam, H.1    Skillicorn, D.B.2    Martin, P.3
  • 25
    • 34548766695 scopus 로고    scopus 로고
    • A semi-random multiple decision-tree algorithm for mining data streams
    • Hu X., Li P., Wu X., Wu G. A semi-random multiple decision-tree algorithm for mining data streams. J. Comput. Sci. Technol. 2007, 22:711-724.
    • (2007) J. Comput. Sci. Technol. , vol.22 , pp. 711-724
    • Hu, X.1    Li, P.2    Wu, X.3    Wu, G.4
  • 26
    • 68749105782 scopus 로고    scopus 로고
    • Mining concept-drifting data streams with multiple semi-random decision trees
    • P. Li, X. Hu, X. Wu, Mining concept-drifting data streams with multiple semi-random decision trees, in: Proceedings of ADMA'08, 2008, pp. 733-740.
    • (2008) Proceedings of ADMA'08 , pp. 733-740
    • Li, P.1    Hu, X.2    Wu, X.3
  • 27
    • 77955356202 scopus 로고    scopus 로고
    • A random decision tree ensemble for mining concept drifts from noisy data streams
    • Li P., Wu X., Hu X., Liang Q., Gao Y. A random decision tree ensemble for mining concept drifts from noisy data streams. Appl. Artif. Intell. 2010, 24:680-710.
    • (2010) Appl. Artif. Intell. , vol.24 , pp. 680-710
    • Li, P.1    Wu, X.2    Hu, X.3    Liang, Q.4    Gao, Y.5
  • 28
    • 79957936807 scopus 로고    scopus 로고
    • Random ensemble decision trees for learning concept-drifting data streams
    • P. Li, X. Wu, Q. Liang, X. Hu, Y. Zhang, Random ensemble decision trees for learning concept-drifting data streams, in: Proceedings of PAKDD'11, 2011, pp. 313-325.
    • (2011) Proceedings of PAKDD'11 , pp. 313-325
    • Li, P.1    Wu, X.2    Liang, Q.3    Hu, X.4    Zhang, Y.5
  • 29
    • 9444240308 scopus 로고    scopus 로고
    • On the optimality of probability estimation by random decision trees
    • W. Fan, On the optimality of probability estimation by random decision trees, in: Proceedings of AAAI'04, 2004, pp. 336-341.
    • (2004) Proceedings of AAAI'04 , pp. 336-341
    • Fan, W.1
  • 30
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • Hoeffding W. Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 1963, 58:13-30.
    • (1963) J. Am. Stat. Assoc. , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 31
    • 32344442287 scopus 로고    scopus 로고
    • Combining proactive and reactive predictions for data streams
    • Y. Yang, X. Wu, X. Zhu, Combining proactive and reactive predictions for data streams, in: Proceedings of KDD'05, 2005, pp. 710-715.
    • (2005) Proceedings of KDD'05 , pp. 710-715
    • Yang, Y.1    Wu, X.2    Zhu, X.3
  • 32
    • 85057943047 scopus 로고
    • Random decision forests
    • T.K. Ho, Random decision forests, in: Proceedings of ICDAR'95, 1995, pp. 278-282.
    • (1995) Proceedings of ICDAR'95 , pp. 278-282
    • Ho, T.K.1
  • 33
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Amit Y., Geman D. Shape quantization and recognition with randomized trees. Neural Comput. 1997, 9:1545-1588.
    • (1997) Neural Comput. , vol.9 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 34
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20:832-844.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 36
    • 77951947305 scopus 로고    scopus 로고
    • An incremental extremely random forest classifier for online learning and tracking
    • A. Wang, G. Wan, Z. Cheng, S. Li, An incremental extremely random forest classifier for online learning and tracking, in: Proceedings of ICIP'09, 2009, pp. 1433-1436.
    • (2009) Proceedings of ICIP'09 , pp. 1433-1436
    • Wang, A.1    Wan, G.2    Cheng, Z.3    Li, S.4
  • 37
    • 2342623867 scopus 로고
    • Learning flexible concepts from streams of examples: Flora2
    • G. Widmer, M. Kubat, Learning flexible concepts from streams of examples: Flora2, in: Proceedings of ECAI'92, 1992, pp. 463-467.
    • (1992) Proceedings of ECAI'92 , pp. 463-467
    • Widmer, G.1    Kubat, M.2
  • 39
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • J.C. Schlimmer, R.H. Granger Jr., Incremental learning from noisy data, Mach. Learn. 1 (1986) 317-354.
    • (1986) Mach. Learn. , vol.1 , pp. 317-354
    • Schlimmer, J.C.1    Granger, R.H.2
  • 41
    • 84862820236 scopus 로고    scopus 로고
    • Learning from concept drifting data streams with unlabeled data
    • Wu X., Li P., Hu X. Learning from concept drifting data streams with unlabeled data. Neurocomputing 2012, 92:145-155.
    • (2012) Neurocomputing , vol.92 , pp. 145-155
    • Wu, X.1    Li, P.2    Hu, X.3
  • 42
    • 84863283905 scopus 로고    scopus 로고
    • Mining recurring concept drifts with limited labeled streaming data
    • Li P., Wu X., Hu X. Mining recurring concept drifts with limited labeled streaming data. ACM Trans. Intell. Syst. Technol. 2012, 3:29-1-32.
    • (2012) ACM Trans. Intell. Syst. Technol. , vol.3 , pp. 29-32
    • Li, P.1    Wu, X.2    Hu, X.3
  • 43
    • 67650671582 scopus 로고    scopus 로고
    • Parameter estimation in semi-random decision tree ensembling on streaming data
    • P. Li, Q. Liang, X. Wu, X. Hu, Parameter estimation in semi-random decision tree ensembling on streaming data, in: Proceedings of PAKDD'09, 2009, pp. 376-388.
    • (2009) Proceedings of PAKDD'09 , pp. 376-388
    • Li, P.1    Liang, Q.2    Wu, X.3    Hu, X.4
  • 47
    • 33644537898 scopus 로고    scopus 로고
    • Learning decision trees from dynamic data streams
    • J. Gama, P. Medas, P. Rodrigues, Learning decision trees from dynamic data streams, in: Proceedings of SAC'05, 2005, pp. 573-577.
    • (2005) Proceedings of SAC'05 , pp. 573-577
    • Gama, J.1    Medas, P.2    Rodrigues, P.3
  • 48
    • 85008443486 scopus 로고    scopus 로고
    • P-values for classification
    • Dümbgen L. P-values for classification. Electron. J. Stat. 2008, 2:468-493.
    • (2008) Electron. J. Stat. , vol.2 , pp. 468-493
    • Dümbgen, L.1
  • 49
    • 26944434312 scopus 로고    scopus 로고
    • Maximizing tree diversity by building complete-random decision trees
    • F.T. Liu, K.M. Ting, W. Fan, Maximizing tree diversity by building complete-random decision trees, in: Proceedings of PAKDD'05, 2005, pp. 605-610.
    • (2005) Proceedings of PAKDD'05 , pp. 605-610
    • Liu, F.T.1    Ting, K.M.2    Fan, W.3
  • 50
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Angluin D., Laird P. Learning from noisy examples. Mach. Learn. 1988, 2:343-370.
    • (1988) Mach. Learn. , vol.2 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 53
    • 0012992955 scopus 로고    scopus 로고
    • in: Artificial Intelligence and Statistics 2001, Morgan Kaufmann
    • N.C. Oza, S. Russell, Online bagging and boosting, in: Artificial Intelligence and Statistics 2001, Morgan Kaufmann, 2001, pp. 105-112.
    • (2001) Online bagging and boosting , pp. 105-112
    • Oza, N.C.1    Russell, S.2
  • 56
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 57
    • 84916933802 scopus 로고    scopus 로고
    • Lift: Multi-label learning with label-specific features
    • Zhang M., Wu L. Lift: Multi-label learning with label-specific features. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37:107-120.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , pp. 107-120
    • Zhang, M.1    Wu, L.2
  • 58
    • 84943987463 scopus 로고
    • Multiple comparisons among means
    • Demšar J. Multiple comparisons among means. J. Am. Stat. Assoc. 1961, 56:52-64.
    • (1961) J. Am. Stat. Assoc. , vol.56 , pp. 52-64
    • Demšar, J.1
  • 60
    • 84931053241 scopus 로고    scopus 로고
    • Shopping Web Services, .
    • Yahoo! Shopping Web Services, . http://developer.yahoo.com/everything.html.
  • 62
    • 84956763153 scopus 로고    scopus 로고
    • Recurrent concepts in data streams classification
    • Gama J., Kosina P. Recurrent concepts in data streams classification. Knowledge and Information Systems 2014, 40(3):489-507.
    • (2014) Knowledge and Information Systems , vol.40 , Issue.3 , pp. 489-507
    • Gama, J.1    Kosina, P.2
  • 63
    • 80053905542 scopus 로고    scopus 로고
    • Decision Tree Training Method using Data Streams
    • Wozniak M., Hybrid A. Decision Tree Training Method using Data Streams. Knowledge and Information Systems 2011, 29(2):335-347.
    • (2011) Knowledge and Information Systems , vol.29 , Issue.2 , pp. 335-347
    • Wozniak, M.1    Hybrid, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.