메뉴 건너뛰기




Volumn 4, Issue , 2015, Pages 2935-2941

Pareto ensemble pruning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; OPTIMIZATION;

EID: 84949912487     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (95)

References (25)
  • 4
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Machine Learning 24(2):123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • Brown, G.; Wyatt, J.; Harris, R.; and Yao, X. 2005. Diversity creation methods: A survey and categorisation. Information Fusion 6(1):5-20.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 10
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7:1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 11
    • 0035276208 scopus 로고    scopus 로고
    • Drift analysis and average time complexity of evolutionary algorithms
    • He, J., and Yao, X. 2001. Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence 127(1):57-85.
    • (2001) Artificial Intelligence , vol.127 , Issue.1 , pp. 57-85
    • He, J.1    Yao, X.2
  • 12
    • 79956208533 scopus 로고    scopus 로고
    • Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles
    • Hernández-Lobato, D.; Marttnez-Munoz, G.; and Suarez, A. 2011. Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles. Neurocomputing 74(12):2250-2264.
    • (2011) Neurocomputing , vol.74 , Issue.12 , pp. 2250-2264
    • Hernández-Lobato, D.1    Marttnez-Munoz, G.2    Suarez, A.3
  • 15
    • 0015604699 scopus 로고
    • An effective heuristic algorithm for the travel ing-salesman problem
    • Lin, S., and Kernighan, B. W. 1973. An effective heuristic algorithm for the travel ing-salesman problem. Operations Research 21(2):498-516.
    • (1973) Operations Research , vol.21 , Issue.2 , pp. 498-516
    • Lin, S.1    Kernighan, B.W.2
  • 19
    • 84885898341 scopus 로고    scopus 로고
    • An analysis on recombination in multi-objective evolutionary optimization
    • Qian, C.; Yu, Y.; and Zhou, Z.-H. 2013. An analysis on recombination in multi-objective evolutionary optimization. Artificial Intelligence 204:99-119.
    • (2013) Artificial Intelligence , vol.204 , pp. 99-119
    • Qian, C.1    Yu, Y.2    Zhou, Z.-H.3
  • 22
    • 84862795189 scopus 로고    scopus 로고
    • On the approximation ability of evolutionary optimization with application to minimum set cover
    • Yu, Y.; Yao, X.; and Zhou, Z.-H. 2012. On the approximation ability of evolutionary optimization with application to minimum set cover. Artificial Intelligence 180-181:20-33.
    • (2012) Artificial Intelligence , vol.180-181 , pp. 20-33
    • Yu, Y.1    Yao, X.2    Zhou, Z.-H.3
  • 24
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou, Z.-H.; Wu, J.; and Tang, W. 2002. Ensembling neural networks: Many could be better than all. Artificial Intelligence 137(1):239-263.
    • (2002) Artificial Intelligence , vol.137 , Issue.1 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.