메뉴 건너뛰기




Volumn 150, Issue PB, 2015, Pages 501-512

Dynamic ensemble pruning based on multi-label classification

Author keywords

Dynamic classifier fusion; Ensemble pruning; Ensemble selection; Multi label classification

Indexed keywords

PERSONNEL TRAINING;

EID: 84922661095     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.07.063     Document Type: Article
Times cited : (34)

References (34)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • UCI machine learning repository
    • A. Asuncion, D. Newman, UCI machine learning repository. URL 〈〉, 2007. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 2
    • 0142228873 scopus 로고    scopus 로고
    • A family of additive online algorithms for category ranking
    • Crammer K., Singer Y. A family of additive online algorithms for category ranking. J. Mach. Learn. Res. 2003, 3:1025-1058.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1025-1058
    • Crammer, K.1    Singer, Y.2
  • 3
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 4
    • 0036931834 scopus 로고    scopus 로고
    • Pruning and dynamic scheduling of cost-sensitive ensembles
    • in: Eighteenth National Conference on Artificial Intelligence, American Association for Artificial Intelligence
    • W. Fan, F. Chu, H. Wang, P.S. Yu, Pruning and dynamic scheduling of cost-sensitive ensembles, in: Eighteenth National Conference on Artificial Intelligence, American Association for Artificial Intelligence, 2002, pp. 146-151.
    • (2002) , pp. 146-151
    • Fan, W.1    Chu, F.2    Wang, H.3    Yu, P.S.4
  • 8
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behavior
    • Giacinto G., Roli F. Dynamic classifier selection based on multiple classifier behavior. Pattern Recognit. 2001, 34(9):1879-1881.
    • (2001) Pattern Recognit. , vol.34 , Issue.9 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 13
    • 38349135448 scopus 로고    scopus 로고
    • From dynamic classifier selection to dynamic ensemble selection
    • Ko A.H., Sabourin R., Alceu Souza Britto J. From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit. 2007, 41:1718-1731.
    • (2007) Pattern Recognit. , vol.41 , pp. 1718-1731
    • Ko, A.H.1    Sabourin, R.2    Alceu Souza Britto, J.3
  • 15
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • May
    • Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51(May (2)):181-207.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 16
    • 84867873453 scopus 로고    scopus 로고
    • Dynamic classifier ensemble using classification confidence
    • Li L., Zou B., Hu Q., Wu X., Yu D. Dynamic classifier ensemble using classification confidence. Neurocomputing 2013, 99(0):581-591.
    • (2013) Neurocomputing , vol.99 , Issue.0 , pp. 581-591
    • Li, L.1    Zou, B.2    Hu, Q.3    Wu, X.4    Yu, D.5
  • 17
    • 84887611642 scopus 로고    scopus 로고
    • Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers
    • Lysiak R., Kurzynski M., Woloszynski T. Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 2014, 126(0):29-35.
    • (2014) Neurocomputing , vol.126 , Issue.0 , pp. 29-35
    • Lysiak, R.1    Kurzynski, M.2    Woloszynski, T.3
  • 19
    • 0012476755 scopus 로고    scopus 로고
    • Arbitrating among competing classifiers using learned referees
    • Ortega J., Koppel M., Argamon S. Arbitrating among competing classifiers using learned referees. Knowl. Inf. Syst. 2001, 3(4):470-490.
    • (2001) Knowl. Inf. Syst. , vol.3 , Issue.4 , pp. 470-490
    • Ortega, J.1    Koppel, M.2    Argamon, S.3
  • 31
    • 77958150674 scopus 로고    scopus 로고
    • A dynamic classifier ensemble selection approach for noise data
    • Xiao J., He C., Jiang X., Liu D. A dynamic classifier ensemble selection approach for noise data. Inf. Sci. 2010, 180(18):3402-3421.
    • (2010) Inf. Sci. , vol.180 , Issue.18 , pp. 3402-3421
    • Xiao, J.1    He, C.2    Jiang, X.3    Liu, D.4
  • 32
    • 84889599338 scopus 로고    scopus 로고
    • Sorting-based dynamic classifier ensemble selection
    • in: 12th International Conference on Document Analysis and Recognition, IEEE
    • Y. Yan, X.-C. Yin, Z.-B. Wang, X. Yin, C. Yang, H.-W. Hao, Sorting-based dynamic classifier ensemble selection, in: 12th International Conference on Document Analysis and Recognition, IEEE, 2013, pp. 673-677.
    • (2013) , pp. 673-677
    • Yan, Y.1    Yin, X.-C.2    Wang, Z.-B.3    Yin, X.4    Yang, C.5    Hao, H.-W.6
  • 33
    • 33748366796 scopus 로고    scopus 로고
    • Multi-label neural networks with applications to functional genomics and text categorization
    • Zhang M.-L., Zhou Z.-H. Multi-label neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 2006, 18(10):1338-1351.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 34
    • 33947681316 scopus 로고    scopus 로고
    • Ml-knn. a lazy learning approach to multi-label learning
    • Zhang M.-L., Zhou Z.-H. Ml-knn. a lazy learning approach to multi-label learning. Pattern Recognit. 2007, 40(7):2038-2048.
    • (2007) Pattern Recognit. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.