메뉴 건너뛰기




Volumn 203, Issue , 2013, Pages 1-18

On the doubt about margin explanation of boosting

Author keywords

Boosting; Classification; Ensemble methods; Margin theory

Indexed keywords

BOOSTING; ENSEMBLE METHODS; GENERALIZATION ERROR; GENERALIZATION ERROR BOUNDS; MARGIN DISTRIBUTIONS; MARGIN THEORY; TRAINING ERRORS; VOTING CLASSIFIERS;

EID: 84881447722     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artint.2013.07.002     Document Type: Article
Times cited : (196)

References (47)
  • 2
    • 62949181077 scopus 로고    scopus 로고
    • Exploration-exploitation tradeoff using variance estimates in multi-armed bandits
    • J.Y. Audibert, R. Munos, and C. Szepesvári Exploration- exploitation tradeoff using variance estimates in multi-armed bandits Theoretical Computer Science 410 19 2009 1876 1902
    • (2009) Theoretical Computer Science , vol.410 , Issue.19 , pp. 1876-1902
    • Audibert, J.Y.1    Munos, R.2    Szepesvári, C.3
  • 5
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms: Bagging, boosting and variants Machine Learning 36 1 1999 105 139
    • (1999) Machine Learning , vol.36 , Issue.1 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 8
    • 0346786584 scopus 로고    scopus 로고
    • Arcing algorithm
    • L. Breiman Arcing algorithm Annuals of Statistics 26 7 1998 801 849
    • (1998) Annuals of Statistics , vol.26 , Issue.7 , pp. 801-849
    • Breiman, L.1
  • 9
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing classifiers
    • L. Breiman Prediction games and arcing classifiers Neural Computation 11 7 1999 1493 1517
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 10
    • 0013228784 scopus 로고    scopus 로고
    • Tech. Rep. 577 Statistics Department, University of California Berkeley, CA
    • L. Breiman Some infinity theory for predictor ensembles Tech. Rep. 577 2000 Statistics Department, University of California Berkeley, CA
    • (2000) Some Infinity Theory for Predictor Ensembles
    • Breiman, L.1
  • 14
    • 0000182415 scopus 로고
    • A measure of asymptotic efficiency of tests of a hypothesis based upon the sum of the observations
    • H. Chernoff A measure of asymptotic efficiency of tests of a hypothesis based upon the sum of the observations Annals of Mathematical Statistics 24 4 1952 493 507
    • (1952) Annals of Mathematical Statistics , vol.24 , Issue.4 , pp. 493-507
    • Chernoff, H.1
  • 16
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • T. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization Machine Learning 40 2 2000 139 157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.1
  • 17
    • 85156217048 scopus 로고    scopus 로고
    • Boosting decision trees
    • D.S. Touretzky, M. Mozer, M.E. Hasselmo, MIT Press Cambridge, MA
    • H. Drucker, and C. Cortes Boosting decision trees D.S. Touretzky, M. Mozer, M.E. Hasselmo, Advances in Neural Information Processing Systems vol. 8 1996 MIT Press Cambridge, MA 479 485
    • (1996) Advances in Neural Information Processing Systems , vol.8 VOL. , pp. 479-485
    • Drucker, H.1    Cortes, C.2
  • 19
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Freund, and R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting Journal of Computer and System Sciences 55 1 1997 119 139 (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 20
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani Additive logistic regression: A statistical view of boosting. with discussions Annuals of Statistics 28 2 2000 337 407 (Pubitemid 33227445)
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 23
    • 84947403595 scopus 로고
    • Probability inequalities for sum of bounded random variables
    • W. Hoeffding Probability inequalities for sum of bounded random variables Journal of American Statistical Society 58 301 1963 13 30
    • (1963) Journal of American Statistical Society , vol.58 , Issue.301 , pp. 13-30
    • Hoeffding, W.1
  • 24
    • 26444545593 scopus 로고    scopus 로고
    • Process consistency for AdaBoost
    • DOI 10.1214/aos/1079120128
    • W. Jiang Process consistency for AdaBoost Annuals of Statistics 32 1 2004 13 29 (Pubitemid 41449303)
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 13-29
    • Jiang, W.1
  • 25
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • L. Koltchinskii, and D. Panchanko Empirical margin distributions and bounding the generalization error of combined classifiers Annuals of Statistics 30 1 2002 1 50
    • (2002) Annuals of Statistics , vol.30 , Issue.1 , pp. 1-50
    • Koltchinskii, L.1    Panchanko, D.2
  • 26
    • 26444607491 scopus 로고    scopus 로고
    • Complexities of convex combinations and bounding the generalization error in classification
    • L. Koltchinskii, and D. Panchanko Complexities of convex combinations and bounding the generalization error in classification Annuals of Statistics 33 4 2005 1455 1496
    • (2005) Annuals of Statistics , vol.33 , Issue.4 , pp. 1455-1496
    • Koltchinskii, L.1    Panchanko, D.2
  • 27
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • DOI 10.1214/aos/1079120129
    • G. Lugosi, and N. Vayatis On the bayes-risk consistency of regularized boosting methods Annuals of Statistics 32 1 2004 30 55 (Pubitemid 41449304)
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 28
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent
    • S.A. Solla, T.K. Leen, K.-R. Müller, MIT Press Cambridge, MA
    • L. Mason, J. Baxter, P.L. Bartlett, and M.R. Frean Boosting algorithms as gradient descent S.A. Solla, T.K. Leen, K.-R. Müller, Advances in Neural Information Processing Systems vol. 12 1999 MIT Press Cambridge, MA 512 518
    • (1999) Advances in Neural Information Processing Systems , vol.12 VOL. , pp. 512-518
    • Mason, L.1    Baxter, J.2    Bartlett, P.L.3    Frean, M.R.4
  • 29
    • 33748435154 scopus 로고    scopus 로고
    • Concentration inequalities for functions of independent variables
    • DOI 10.1002/rsa.20105
    • A. Maurer Concentration inequalities for functions of independent variables Random Structures and Algorithms 29 2 2006 121 138 (Pubitemid 44342936)
    • (2006) Random Structures and Algorithms , vol.29 , Issue.2 , pp. 121-138
    • Maurer, A.1
  • 31
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • Cambridge University Press Cambridge, UK
    • C. McDiarmid On the method of bounded differences Surveys in Combinatorics 1989 Cambridge University Press Cambridge, UK 148 188
    • (1989) Surveys in Combinatorics , pp. 148-188
    • McDiarmid, C.1
  • 33
    • 41549131613 scopus 로고    scopus 로고
    • Evidence contrary to the statistical view of boosting with discussion
    • D. Mease, and A. Wyner Evidence contrary to the statistical view of boosting with discussion Journal of Machine Learning Research 9 2008 131 201
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 131-201
    • Mease, D.1    Wyner, A.2
  • 39
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. Schapire, Y. Freund, P.L. Bartlett, and W. Lee Boosting the margin: A new explanation for the effectives of voting methods Annuals of Statistics 26 5 1998 1651 1686 (Pubitemid 128376902)
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 41
    • 77950861838 scopus 로고    scopus 로고
    • Boosting through optimization of margin distributions
    • C. Shen, and H. Li Boosting through optimization of margin distributions IEEE Transactions on Neural Networks 21 4 2010 659 666
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.4 , pp. 659-666
    • Shen, C.1    Li, H.2
  • 42
    • 85162341958 scopus 로고    scopus 로고
    • Variance penalizing adaboost
    • J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F.C.N. Pereira, K.Q. Weinberger, MIT Press Cambridge, MA
    • P.K. Shivaswamy, and T. Jebara Variance penalizing adaboost J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F.C.N. Pereira, K.Q. Weinberger, Advances in Neural Information Processing Systems vol. 24 2011 MIT Press Cambridge, MA 1908 1916
    • (2011) Advances in Neural Information Processing Systems , vol.24 VOL. , pp. 1908-1916
    • Shivaswamy, P.K.1    Jebara, T.2
  • 46
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang Statistical behavior and consistency of classification methods based on convex risk minimization Annals of Statistics 32 1 2004 56 85
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 56-85
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.