메뉴 건너뛰기




Volumn 19, Issue 7, 2017, Pages 742-751

Quantifying forces in cell biology

Author keywords

[No Author keywords available]

Indexed keywords

BIOSENSOR; CANTILEVER; CELL FUNCTION; CELL STRUCTURE; CELL SURFACE; CYTOLOGY; DATA ANALYSIS SOFTWARE; EXTRACELLULAR MATRIX; FLUORESCENCE RESONANCE ENERGY TRANSFER; GEOMETRIC FORCE INFERENCE; LASER; MICROPILLAR; MICROSCOPY; MONOLAYER STRESS MICROSCOPY; PRIORITY JOURNAL; REVIEW; SIGNAL NOISE RATIO; TRACTION MICROSCOPY; ANIMAL; BIOLOGICAL MODEL; BIOMECHANICS; CELL MEMBRANE; CYTOSKELETON; GENETIC PROCEDURES; HUMAN; MECHANICAL STRESS; MECHANOTRANSDUCTION; PHYSIOLOGY; PROCEDURES; SINGLE CELL ANALYSIS;

EID: 85021775122     PISSN: 14657392     EISSN: 14764679     Source Type: Journal    
DOI: 10.1038/ncb3564     Document Type: Review
Times cited : (385)

References (152)
  • 2
    • 0040222985 scopus 로고
    • The physiological principle of minimum work: II. Oxygen exchange in capillaries
    • Murray, C. D. The physiological principle of minimum work: II. Oxygen exchange in capillaries. Proc. Natl Acad. Sci. USA 12, 299-304 (1926).
    • (1926) Proc. Natl Acad. Sci. USA , vol.12 , pp. 299-304
    • Murray, C.D.1
  • 4
    • 84944486946 scopus 로고
    • Microdissection studies. II. the cell aster: A reversible gelation phenomenon
    • Chambers, R. Microdissection studies. II. The cell aster: a reversible gelation phenomenon. J. Exp. Zool. 23, 483-505 (1917).
    • (1917) J. Exp. Zool. , vol.23 , pp. 483-505
    • Chambers, R.1
  • 5
    • 50349116112 scopus 로고
    • The physical properties of cytoplasm
    • Crick, F. H. C. & Hughes, A . F. W. The physical properties of cytoplasm. Exp. Cell. Res. 1, 37-80 (1950).
    • (1950) Exp. Cell. Res. , vol.1 , pp. 37-80
    • Crick, F.H.C.1    Hughes, A.F.W.2
  • 6
    • 85019255605 scopus 로고    scopus 로고
    • Mechanotransduction: Use the force(s)
    • Paluch, E. K. et al. Mechanotransduction: use the force(s). BMC Biol. 13, 47 (2015).
    • (2015) BMC Biol. , vol.13 , pp. 47
    • Paluch, E.K.1
  • 7
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689 (2006).
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 8
    • 0041423614 scopus 로고    scopus 로고
    • Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium
    • Farge, E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365-1377 (2003).
    • (2003) Curr. Biol. , vol.13 , pp. 1365-1377
    • Farge, E.1
  • 9
    • 84860837377 scopus 로고    scopus 로고
    • Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway
    • Bosveld, F. et al. Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science 336, 724-727 (2012).
    • (2012) Science , vol.336 , pp. 724-727
    • Bosveld, F.1
  • 10
    • 84987757876 scopus 로고    scopus 로고
    • Collective cell durotaxis emerges from long-range intercellular force transmission
    • Sunyer, R. et al. Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353, 1157-1161 (2016).
    • (2016) Science , vol.353 , pp. 1157-1161
    • Sunyer, R.1
  • 11
    • 84994662715 scopus 로고    scopus 로고
    • Tissue mechanics promote IDH1-dependent HIF1-tenascin C feedback to regulate glioblastoma aggression
    • Miroshnikova, Y. A. et al. Tissue mechanics promote IDH1-dependent HIF1-tenascin C feedback to regulate glioblastoma aggression. Nat. Cell Biol. 18, 1336-1345 (2016).
    • (2016) Nat. Cell Biol. , vol.18 , pp. 1336-1345
    • Miroshnikova, Y.A.1
  • 12
    • 0035844869 scopus 로고    scopus 로고
    • Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism
    • Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175-1186 (2001).
    • (2001) J. Cell Biol. , vol.153 , pp. 1175-1186
    • Riveline, D.1
  • 13
    • 77953123743 scopus 로고    scopus 로고
    • Catenin as a tension transducer that induces adherens junction development
    • Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M.-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12, 533-542 (2010).
    • (2010) Nat. Cell Biol. , vol.12 , pp. 533-542
    • Yonemura, S.1    Wada, Y.2    Watanabe, T.3    Nagafuchi, A.4    Shibata, M.5
  • 14
    • 79551677684 scopus 로고    scopus 로고
    • Cells respond to mechanical stress by rapid disassembly of caveolae
    • Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402-413 (2011).
    • (2011) Cell , vol.144 , pp. 402-413
    • Sinha, B.1
  • 15
    • 84883059455 scopus 로고    scopus 로고
    • Nuclear laminA scales with tissue stiffness and enhances matrix-directed differentiation
    • Swift, J. et al. Nuclear laminA scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).
    • (2013) Science , vol.341 , pp. 1240104
    • Swift, J.1
  • 16
    • 84963600077 scopus 로고    scopus 로고
    • Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity
    • Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540-548 (2016).
    • (2016) Nat. Cell Biol. , vol.18 , pp. 540-548
    • Elosegui-Artola, A.1
  • 17
    • 84869111112 scopus 로고    scopus 로고
    • United we stand: Integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction
    • Schwarz, U. S. & Gardel, M. L. United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J. Cell Sci. 125, 3051-3060 (2012).
    • (2012) J. Cell Sci. , vol.125 , pp. 3051-3060
    • Schwarz, U.S.1    Gardel, M.L.2
  • 18
    • 84964802266 scopus 로고    scopus 로고
    • Measuring cell-generated forces: A guide to the available tools
    • Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415-423 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 415-423
    • Polacheck, W.J.1    Chen, C.S.2
  • 19
    • 84954523974 scopus 로고    scopus 로고
    • Measuring forces and stresses in situ in living tissues
    • Sugimura, K., Lenne, P. F. & Graner, F. Measuring forces and stresses in situ in living tissues. Development 143, 186-196 (2016).
    • (2016) Development , vol.143 , pp. 186-196
    • Sugimura, K.1    Lenne, P.F.2    Graner, F.3
  • 20
    • 84979466025 scopus 로고    scopus 로고
    • A toolbox to explore the mechanics of living embryonic tissues
    • Campas, O. A toolbox to explore the mechanics of living embryonic tissues. Semin. Cell Dev. Biol. 55, 119-130 (2016).
    • (2016) Semin. Cell Dev. Biol. , vol.55 , pp. 119-130
    • Campas, O.1
  • 21
    • 0033066120 scopus 로고    scopus 로고
    • Stresses at the cell-to-substrate interface during locomotion of fibroblasts
    • Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307-2316 (1999).
    • (1999) Biophys. J. , vol.76 , pp. 2307-2316
    • Dembo, M.1    Wang, Y.L.2
  • 22
    • 84896868093 scopus 로고    scopus 로고
    • Topographical control of multiple cell adhesion molecules for traction force microscopy
    • Polio, S. R. et al. Topographical control of multiple cell adhesion molecules for traction force microscopy. Integr. Biol. (Camb.) 6, 357-365 (2014).
    • (2014) Integr. Biol. (Camb.) , vol.6 , pp. 357-365
    • Polio, S.R.1
  • 23
    • 84989857504 scopus 로고    scopus 로고
    • Confocal reference free traction force microscopy
    • Bergert, M. et al. Confocal reference free traction force microscopy. Nat. Commun. 7, 12814 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 12814
    • Bergert, M.1
  • 24
    • 84934437770 scopus 로고    scopus 로고
    • Traction microscopy to identify force modulation in subresolution adhesions
    • Han, S. J., Oak, Y., Groisman, A. & Danuser, G. Traction microscopy to identify force modulation in subresolution adhesions. Nat. Methods 12, 653-656 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 653-656
    • Han, S.J.1    Oak, Y.2    Groisman, A.3    Danuser, G.4
  • 25
    • 84958121725 scopus 로고    scopus 로고
    • For whom the cells pull: Hydrogel and micropost devices for measuring traction forces
    • Ribeiro, A. J., Denisin, A. K., Wilson, R. E. & Pruitt, B. L. For whom the cells pull: hydrogel and micropost devices for measuring traction forces. Methods 94, 51-64 (2016).
    • (2016) Methods , vol.94 , pp. 51-64
    • Ribeiro, A.J.1    Denisin, A.K.2    Wilson, R.E.3    Pruitt, B.L.4
  • 27
    • 34548103828 scopus 로고    scopus 로고
    • Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry
    • Del Alamo, J. C. et al. Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc. Natl Acad. Sci. USA 104, 13343-13348 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 13343-13348
    • Del Alamo, J.C.1
  • 28
    • 67650227472 scopus 로고    scopus 로고
    • Physical forces during collective cell migration
    • Trepat, X. et al. Physical forces during collective cell migration. Nat. Phys. 5, 426 (2009).
    • (2009) Nat. Phys. , vol.5 , pp. 426
    • Trepat, X.1
  • 30
    • 84989166249 scopus 로고    scopus 로고
    • Non-regularised inverse finite element analysis for 3D traction force microscopy
    • Munoz, J. J. Non-regularised inverse finite element analysis for 3D traction force microscopy. Int. J. Numer. Anal. Model. 13, 763-781 (2016).
    • (2016) Int. J. Numer. Anal. Model. , vol.13 , pp. 763-781
    • Munoz, J.J.1
  • 31
    • 37749000819 scopus 로고    scopus 로고
    • High resolution traction force microscopy based on experimental and computational advances
    • Sabass, B., Gardel, M. L., Waterman, C. M. & Schwarz, U. S. High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94, 207-220 (2008).
    • (2008) Biophys. J. , vol.94 , pp. 207-220
    • Sabass, B.1    Gardel, M.L.2    Waterman, C.M.3    Schwarz, U.S.4
  • 33
    • 84964850464 scopus 로고    scopus 로고
    • Super-resolved traction force microscopy (STFM)
    • Colin-York, H. et al. Super-resolved traction force microscopy (STFM). Nano Lett. 16, 2633-2638 (2016).
    • (2016) Nano Lett. , vol.16 , pp. 2633-2638
    • Colin-York, H.1
  • 34
    • 84896274787 scopus 로고    scopus 로고
    • Both contractile axial and lateral traction force dynamics drive amoeboid cell motility
    • Bastounis, E. et al. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility. J. Cell Biol. 204, 1045-1061 (2014).
    • (2014) J. Cell Biol. , vol.204 , pp. 1045-1061
    • Bastounis, E.1
  • 35
    • 70349554702 scopus 로고    scopus 로고
    • Live cells exert 3dimensional traction forces on their substrata
    • Hur, S. S., Zhao, Y., Li, Y. S., Botvinick, E. & Chien, S. Live cells exert 3dimensional traction forces on their substrata. Cell Mol. Bioeng. 2, 425-436 (2009).
    • (2009) Cell Mol. Bioeng. , vol.2 , pp. 425-436
    • Hur, S.S.1    Zhao, Y.2    Li, Y.S.3    Botvinick, E.4    Chien, S.5
  • 36
    • 84899695743 scopus 로고    scopus 로고
    • High resolution, large deformation 3D traction force microscopy
    • Toyjanova, J. et al. High resolution, large deformation 3D traction force microscopy. PLoS ONE 9, e90976 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e90976
    • Toyjanova, J.1
  • 38
    • 78649717029 scopus 로고    scopus 로고
    • Measurement of mechanical tractions exerted by cells in three-dimensional matrices
    • Legant, W. R. et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7, 969-971 (2010).
    • (2010) Nat. Methods , vol.7 , pp. 969-971
    • Legant, W.R.1
  • 39
    • 84961295397 scopus 로고    scopus 로고
    • Three-dimensional force microscopy of cells in biopolymer networks
    • Steinwachs, J. et al. Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods 13, 171-176 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 171-176
    • Steinwachs, J.1
  • 40
    • 84921855590 scopus 로고    scopus 로고
    • Measurement of cell traction forces with ImageJ
    • Martiel, J. L. et al. Measurement of cell traction forces with ImageJ. Methods Cell Biol. 125, 269-287 (2015).
    • (2015) Methods Cell Biol. , vol.125 , pp. 269-287
    • Martiel, J.L.1
  • 41
    • 84901379766 scopus 로고    scopus 로고
    • Traction force microscopy in physics and biology
    • Style, R. W. et al. Traction force microscopy in physics and biology. Soft Matter 10, 4047-4055 (2014).
    • (2014) Soft Matter , vol.10 , pp. 4047-4055
    • Style, R.W.1
  • 42
    • 84944153808 scopus 로고    scopus 로고
    • Traction force microscopy on soft elastic substrates: A guide to recent computational advances
    • Schwarz, U. S. & Soine, J. R. Traction force microscopy on soft elastic substrates: a guide to recent computational advances. Biochim. Biophys. Acta 1853, 3095-3104 (2015).
    • (2015) Biochim. Biophys. Acta , vol.1853 , pp. 3095-3104
    • Schwarz, U.S.1    Soine, J.R.2
  • 43
    • 36449007442 scopus 로고
    • Calibration of atomic-force microscope tips
    • Hutter, J. L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868-1873 (1993).
    • (1993) Rev. Sci. Instrum. , vol.64 , pp. 1868-1873
    • Hutter, J.L.1    Bechhoefer, J.2
  • 44
    • 0037452695 scopus 로고    scopus 로고
    • Cells lying on a bed of microneedles: An approach to isolate mechanical force
    • Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484-1489 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 1484-1489
    • Tan, J.L.1
  • 45
    • 14044270846 scopus 로고    scopus 로고
    • Force mapping in epithelial cell migration
    • du Roure, O. et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390-2395 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 2390-2395
    • Du Roure, O.1
  • 46
    • 84933050468 scopus 로고    scopus 로고
    • Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing
    • Gupta, M. et al. Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat. Commun. 6, 7525 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7525
    • Gupta, M.1
  • 47
    • 84859467404 scopus 로고    scopus 로고
    • Cells test substrate rigidity by local contractions on sub-micrometer pillars
    • Ghassemi, S. et al. Cells test substrate rigidity by local contractions on sub-micrometer pillars. Proc. Natl Acad. Sci. USA 109, 5328-5333 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 5328-5333
    • Ghassemi, S.1
  • 48
    • 84952637560 scopus 로고    scopus 로고
    • Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices
    • Wolfenson, H. et al. Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat. Cell Biol. 18, 33-42 (2016).
    • (2016) Nat. Cell Biol. , vol.18 , pp. 33-42
    • Wolfenson, H.1
  • 49
    • 67650427489 scopus 로고    scopus 로고
    • Traction on immobilized netrin1 is sufficient to reorient axons
    • Moore, S. W., Biais, N. & Sheetz, M. P. Traction on immobilized netrin1 is sufficient to reorient axons. Science 325, 166 (2009).
    • (2009) Science , vol.325 , pp. 166
    • Moore, S.W.1    Biais, N.2    Sheetz, M.P.3
  • 50
    • 80555156133 scopus 로고    scopus 로고
    • Techniques to measure pilus retraction forces
    • Biais, N., Higashi, D., So, M. & Ladoux, B. Techniques to measure pilus retraction forces. Methods Mol. Biol. 799, 197-216 (2012).
    • (2012) Methods Mol. Biol. , vol.799 , pp. 197-216
    • Biais, N.1    Higashi, D.2    So, M.3    Ladoux, B.4
  • 51
    • 34347204139 scopus 로고    scopus 로고
    • Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates
    • Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P. & Ladoux, B. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA 104, 8281-8286 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 8281-8286
    • Saez, A.1    Ghibaudo, M.2    Buguin, A.3    Silberzan, P.4    Ladoux, B.5
  • 52
    • 84959432552 scopus 로고    scopus 로고
    • Cell motility regulation on a stepped micro pillar array device (SMPAD) with a discrete stiffness gradient
    • Lee, S., Hong, J. & Lee, J. Cell motility regulation on a stepped micro pillar array device (SMPAD) with a discrete stiffness gradient. Soft Matter 12, 2325-2333 (2016).
    • (2016) Soft Matter , vol.12 , pp. 2325-2333
    • Lee, S.1    Hong, J.2    Lee, J.3
  • 53
    • 79960349754 scopus 로고    scopus 로고
    • Magnetic micropillars as a tool to govern substrate deformations
    • le Digabel, J. et al. Magnetic micropillars as a tool to govern substrate deformations. Lab Chip 11, 2630-2636 (2011).
    • (2011) Lab Chip , vol.11 , pp. 2630-2636
    • Le Digabel, J.1
  • 54
    • 35548939456 scopus 로고    scopus 로고
    • Magnetic microposts as an approach to apply forces to living cells
    • Sniadecki, N. J. et al. Magnetic microposts as an approach to apply forces to living cells. Proc. Natl Acad. Sci. USA 104, 14553-14558 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 14553-14558
    • Sniadecki, N.J.1
  • 55
    • 49449111131 scopus 로고    scopus 로고
    • Traction forces and rigidity sensing regulate cell functions
    • Ghibaudo, M. et al. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4, 1836-1843 (2008).
    • (2008) Soft Matter , vol.4 , pp. 1836-1843
    • Ghibaudo, M.1
  • 56
    • 84893553151 scopus 로고    scopus 로고
    • Single-cell force spectroscopy, an emerging tool to quantify cell adhesion to biomaterials
    • Taubenberger, A. V., Hutmacher, D. W. & Muller, D. J. Single-cell force spectroscopy, an emerging tool to quantify cell adhesion to biomaterials. Tissue Eng. Part B Rev. 20, 40-55 (2014).
    • (2014) Tissue Eng. Part B Rev. , vol.20 , pp. 40-55
    • Taubenberger, A.V.1    Hutmacher, D.W.2    Muller, D.J.3
  • 57
    • 84921842530 scopus 로고    scopus 로고
    • Single-cell mechanics: The parallel plates technique
    • Bufi, N., Durand-Smet, P. & Asnacios, A. Single-cell mechanics: the parallel plates technique. Methods Cell Biol. 125, 187-209 (2015).
    • (2015) Methods Cell Biol. , vol.125 , pp. 187-209
    • Bufi, N.1    Durand-Smet, P.2    Asnacios, A.3
  • 58
    • 84867356285 scopus 로고    scopus 로고
    • Characterizing the mechanics of cultured cell monolayers
    • Harris, A. R. et al. Characterizing the mechanics of cultured cell monolayers. Proc. Natl Acad. Sci. USA 109, 16449-16454 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 16449-16454
    • Harris, A.R.1
  • 59
    • 79955856442 scopus 로고    scopus 로고
    • MEMS sensors and microsystems for cell mechanobiology
    • Rajagopalan, J. & Saif, M. T. MEMS sensors and microsystems for cell mechanobiology. J. Micromech. Microeng. 21, 54002-54012 (2011).
    • (2011) J. Micromech. Microeng. , vol.21 , pp. 54002-54012
    • Rajagopalan, J.1    Saif, M.T.2
  • 60
    • 84895067766 scopus 로고    scopus 로고
    • Quantifying cell-generated mechanical forces within living embryonic tissues
    • Campas, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183-189 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 183-189
    • Campas, O.1
  • 61
    • 85002289045 scopus 로고    scopus 로고
    • In vivo quantification of spatially varying mechanical properties in developing tissues
    • Serwane, F. et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14, 181-186 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 181-186
    • Serwane, F.1
  • 62
    • 85010869458 scopus 로고    scopus 로고
    • Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression
    • Dolega, M. E. et al. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat. Commun. 8, 14056 (2017).
    • (2017) Nat. Commun. , vol.8 , pp. 14056
    • Dolega, M.E.1
  • 63
    • 84936084959 scopus 로고    scopus 로고
    • Lighting up the force: Investigating mechanisms of mechanotransduction using fluorescent tension probes
    • Jurchenko, C. & Salaita, K. S. Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell Biol. 35, 2570-2582 (2015).
    • (2015) Mol. Cell Biol. , vol.35 , pp. 2570-2582
    • Jurchenko, C.1    Salaita, K.S.2
  • 64
    • 44349176807 scopus 로고    scopus 로고
    • A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ
    • Meng, F., Suchyna, T. M. & Sachs, F. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 275, 3072-3087 (2008).
    • (2008) FEBS J. , vol.275 , pp. 3072-3087
    • Meng, F.1    Suchyna, T.M.2    Sachs, F.3
  • 65
    • 55949135877 scopus 로고    scopus 로고
    • Visualizing myosin-actin interaction with a genetically-encoded fluorescent strain sensor
    • Iwai, S. & Uyeda, T. Q. Visualizing myosin-actin interaction with a genetically-encoded fluorescent strain sensor. Proc. Natl Acad. Sci. USA 105, 16882-16887 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 16882-16887
    • Iwai, S.1    Uyeda, T.Q.2
  • 66
    • 77954486800 scopus 로고    scopus 로고
    • Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics
    • Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263266 (2010).
    • (2010) Nature , vol.466 , pp. 263266
    • Grashoff, C.1
  • 67
    • 84948715926 scopus 로고    scopus 로고
    • Extracellular rigidity sensing by talin isoform-specific mechanical linkages
    • Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597-1606 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1597-1606
    • Austen, K.1
  • 68
    • 84864506988 scopus 로고    scopus 로고
    • Ecadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch
    • Borghi, N. et al. Ecadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl Acad. Sci. USA 109, 12568-12573 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 12568-12573
    • Borghi, N.1
  • 69
    • 84901317365 scopus 로고    scopus 로고
    • Mechanical feedback through Ecadherin promotes direction sensing during collective cell migration
    • Cai, D. et al. Mechanical feedback through Ecadherin promotes direction sensing during collective cell migration. Cell 157, 1146-1159.
    • Cell , vol.157 , pp. 1146-1159
    • Cai, D.1
  • 70
    • 84878611663 scopus 로고    scopus 로고
    • Fluid shear stress on endothelial cells modulates mechanical tension across VEcadherin and PECAM1
    • Conway, D. E. et al. Fluid shear stress on endothelial cells modulates mechanical tension across VEcadherin and PECAM1. Curr. Biol. 23, 1024-1030 (2013).
    • (2013) Curr. Biol. , vol.23 , pp. 1024-1030
    • Conway, D.E.1
  • 71
    • 84884243072 scopus 로고    scopus 로고
    • Molecular tension sensors report forces generated by single integrin molecules in living cells
    • Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. & Dunn, A. R. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13, 3985-3989 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 3985-3989
    • Morimatsu, M.1    Mekhdjian, A.H.2    Adhikari, A.S.3    Dunn, A.R.4
  • 72
    • 84926293396 scopus 로고    scopus 로고
    • DNA-based digital tension probes reveal integrin forces during early cell adhesion
    • Zhang, Y., Ge, C., Zhu, C. & Salaita, K. DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nat. Commun. 5, 5167 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 5167
    • Zhang, Y.1    Ge, C.2    Zhu, C.3    Salaita, K.4
  • 73
    • 84925512079 scopus 로고    scopus 로고
    • A DNA-based molecular probe for optically reporting cellular traction forces
    • Blakely, B. L. et al. A DNA-based molecular probe for optically reporting cellular traction forces. Nat. Methods 11, 1229-1232 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 1229-1232
    • Blakely, B.L.1
  • 74
    • 85007552149 scopus 로고    scopus 로고
    • Single molecule force measurements in living cells reveal a minimally tensioned integrin state
    • Chang, A. C. et al. Single molecule force measurements in living cells reveal a minimally tensioned integrin state. ACS Nano 10, 10745-10752 (2016).
    • (2016) ACS Nano , vol.10 , pp. 10745-10752
    • Chang, A.C.1
  • 75
    • 33646587736 scopus 로고    scopus 로고
    • Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins
    • Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad. Sci. USA 103, 6190-6195 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 6190-6195
    • Woodside, M.T.1
  • 76
    • 84877946982 scopus 로고    scopus 로고
    • Defining single molecular forces required to activate integrin and notch signaling
    • Wang, X. & Ha, T. Defining single molecular forces required to activate integrin and notch signaling. Science 340, 991-994 (2013).
    • (2013) Science , vol.340 , pp. 991-994
    • Wang, X.1    Ha, T.2
  • 77
    • 84987667387 scopus 로고    scopus 로고
    • Nanoscale mechanics guides cellular decision making
    • Rahil, Z. et al. Nanoscale mechanics guides cellular decision making. Integr. Biol. 8, 929-935 (2016).
    • (2016) Integr. Biol. , vol.8 , pp. 929-935
    • Rahil, Z.1
  • 78
    • 84957884135 scopus 로고    scopus 로고
    • Titin-based nanoparticle tension sensors map high-magnitude integrin forces within focal adhesions
    • Galior, K., Liu, Y., Yehl, K., Vivek, S. & Salaita, K. Titin-based nanoparticle tension sensors map high-magnitude integrin forces within focal adhesions. Nano Lett. 16, 341-348 (2016).
    • (2016) Nano Lett. , vol.16 , pp. 341-348
    • Galior, K.1    Liu, Y.2    Yehl, K.3    Vivek, S.4    Salaita, K.5
  • 79
    • 0036084083 scopus 로고    scopus 로고
    • Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells
    • Wang, N. et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, C606-C616 (2002).
    • (2002) Am. J. Physiol. Cell Physiol. , vol.282 , pp. C606-C616
    • Wang, N.1
  • 80
    • 77953419265 scopus 로고    scopus 로고
    • Mechanical tugging force regulates the size of cell-cell junctions
    • Liu, Z. et al. Mechanical tugging force regulates the size of cell-cell junctions. Proc. Natl Acad. Sci. USA 107, 9944-9949 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 9944-9949
    • Liu, Z.1
  • 81
    • 79953214099 scopus 로고    scopus 로고
    • Cell-ECM traction force modulates endogenous tension at cell-cell contacts
    • Maruthamuthu, V., Sabass, B., Schwarz, U. S. & Gardel, M. L. Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc. Natl Acad. Sci. USA 108, 4708-4713 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 4708-4713
    • Maruthamuthu, V.1    Sabass, B.2    Schwarz, U.S.3    Gardel, M.L.4
  • 82
    • 84925847112 scopus 로고    scopus 로고
    • Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters
    • Ng, M. R., Besser, A., Brugge, J. S. & Danuser, G. Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters. eLife 3, e03282 (2014).
    • (2014) ELife , vol.3 , pp. e03282
    • Ng, M.R.1    Besser, A.2    Brugge, J.S.3    Danuser, G.4
  • 83
    • 79957451087 scopus 로고    scopus 로고
    • Collective cell guidance by cooperative intercellular forces
    • Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10, 469-475 (2011).
    • (2011) Nat. Mater. , vol.10 , pp. 469-475
    • Tambe, D.T.1
  • 84
    • 84992476934 scopus 로고    scopus 로고
    • Rickettsia Sca4 reduces vinculin-mediated intercellular tension to promote spread
    • e10
    • Lamason, R. L. et al. Rickettsia Sca4 reduces vinculin-mediated intercellular tension to promote spread. Cell 167, 670-683. e10 (2016).
    • (2016) Cell , vol.167 , pp. 670-683
    • Lamason, R.L.1
  • 85
    • 84923805975 scopus 로고    scopus 로고
    • A molecular mechanotransduction pathway regulates collective migration of epithelial cells
    • Das, T. et al. A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat. Cell Biol. 17, 276-287 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 276-287
    • Das, T.1
  • 86
    • 80755139465 scopus 로고    scopus 로고
    • Plithotaxis and emergent dynamics in collective cellular migration
    • Trepat, X. & Fredberg, J. J. Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol. 21, 638-646 (2011).
    • (2011) Trends Cell Biol. , vol.21 , pp. 638-646
    • Trepat, X.1    Fredberg, J.J.2
  • 87
    • 84874543570 scopus 로고    scopus 로고
    • Monolayer stress microscopy: Limitations, artifacts, and accuracy of recovered intercellular stresses
    • Tambe, D. T. et al. Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PLoS ONE 8, e55172 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e55172
    • Tambe, D.T.1
  • 88
    • 84905656623 scopus 로고    scopus 로고
    • Intercellular stress reconstitution from traction force data
    • Zimmermann, J. et al. Intercellular stress reconstitution from traction force data. Biophys. J. 107, 548-554 (2014).
    • (2014) Biophys. J. , vol.107 , pp. 548-554
    • Zimmermann, J.1
  • 89
    • 84963533250 scopus 로고    scopus 로고
    • Inference of internal stress in a cell monolayer
    • Nier, V. et al. Inference of internal stress in a cell monolayer. Biophys. J. 110, 1625-1635 (2016).
    • (2016) Biophys. J. , vol.110 , pp. 1625-1635
    • Nier, V.1
  • 91
    • 84864966601 scopus 로고    scopus 로고
    • Mechanical waves during tissue expansion
    • Serra-Picamal, X. et al. Mechanical waves during tissue expansion. Nat. Phys. 8, 628-634 (2012).
    • (2012) Nat. Phys. , vol.8 , pp. 628-634
    • Serra-Picamal, X.1
  • 92
    • 84926343527 scopus 로고    scopus 로고
    • Model-based traction force microscopy reveals differential tension in cellular actin bundles
    • Soine, J. R. et al. Model-based traction force microscopy reveals differential tension in cellular actin bundles. PLoS Comput. Biol. 11, e1004076 (2015).
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004076
    • Soine, J.R.1
  • 93
    • 67650541328 scopus 로고    scopus 로고
    • Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization
    • Colombelli, J. et al. Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J. Cell Sci. 122, 1665-1679 (2009).
    • (2009) J. Cell Sci. , vol.122 , pp. 1665-1679
    • Colombelli, J.1
  • 94
    • 0035252546 scopus 로고    scopus 로고
    • Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo
    • Grill, S. W., Gonczy, P., Stelzer, E. H. K. & Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630-633 (2001).
    • (2001) Nature , vol.409 , pp. 630-633
    • Grill, S.W.1    Gonczy, P.2    Stelzer, E.H.K.3    Hyman, A.A.4
  • 95
    • 33646179573 scopus 로고    scopus 로고
    • Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics
    • Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762-3773 (2006).
    • (2006) Biophys. J. , vol.90 , pp. 3762-3773
    • Kumar, S.1
  • 97
    • 84905966334 scopus 로고    scopus 로고
    • Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation
    • Kasza, K. E., Farrell, D. L. & Zallen, J. A. Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation. Proc. Natl Acad. Sci. USA 111, 11732-11737 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 11732-11737
    • Kasza, K.E.1    Farrell, D.L.2    Zallen, J.A.3
  • 98
    • 70450228482 scopus 로고    scopus 로고
    • Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary
    • Landsberg, K. P. et al. Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr. Biol. 19, 1950-1955 (2009).
    • (2009) Curr. Biol. , vol.19 , pp. 1950-1955
    • Landsberg, K.P.1
  • 99
    • 84884217043 scopus 로고    scopus 로고
    • A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila
    • LeGoff, L., Rouault, H. & Lecuit, T. A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila. Development 140, 4051-4059 (2013).
    • (2013) Development , vol.140 , pp. 4051-4059
    • LeGoff, L.1    Rouault, H.2    Lecuit, T.3
  • 100
    • 57049160895 scopus 로고    scopus 로고
    • Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis
    • Rauzi, M., Verant, P., Lecuit, T. & Lenne, P. F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10, 1401-1410 (2008).
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1401-1410
    • Rauzi, M.1    Verant, P.2    Lecuit, T.3    Lenne, P.F.4
  • 101
    • 84929315796 scopus 로고    scopus 로고
    • YAP is essential for tissue tension to ensure vertebrate 3D body shape
    • Porazinski, S. et al. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521, 217-221 (2015).
    • (2015) Nature , vol.521 , pp. 217-221
    • Porazinski, S.1
  • 102
    • 84893369795 scopus 로고    scopus 로고
    • Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly
    • Campinho, P. et al. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat. Cell Biol. 15, 1405-1414 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1405-1414
    • Campinho, P.1
  • 103
    • 84937505560 scopus 로고    scopus 로고
    • Inter-cellular forces orchestrate contact inhibition of locomotion
    • Davis, J. R. et al. Inter-cellular forces orchestrate contact inhibition of locomotion. Cell 161, 361-373 (2015).
    • (2015) Cell , vol.161 , pp. 361-373
    • Davis, J.R.1
  • 104
    • 84939811028 scopus 로고    scopus 로고
    • Cortical tension allocates the first inner cells of the mammalian embryo
    • Samarage, C. R. et al. Cortical tension allocates the first inner cells of the mammalian embryo. Dev. Cell 34, 435-447 (2015).
    • (2015) Dev. Cell , vol.34 , pp. 435-447
    • Samarage, C.R.1
  • 105
    • 84866253307 scopus 로고    scopus 로고
    • Mechanical state, material properties and continuous description of an epithelial tissue
    • Bonnet, I. et al. Mechanical state, material properties and continuous description of an epithelial tissue. J. R. Soc. Interface 9, 2614-2623 (2012).
    • (2012) J. R. Soc. Interface , vol.9 , pp. 2614-2623
    • Bonnet, I.1
  • 106
    • 0037418891 scopus 로고    scopus 로고
    • Forces for morphogenesis investigated with laser microsurgery and quantitative modeling
    • Hutson, M. S. et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145-149 (2003).
    • (2003) Science , vol.300 , pp. 145-149
    • Hutson, M.S.1
  • 107
    • 73449140122 scopus 로고    scopus 로고
    • Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics
    • Hutson, M. S. et al. Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics. Biophys. J. 97, 3075-3085 (2009).
    • (2009) Biophys. J. , vol.97 , pp. 3075-3085
    • Hutson, M.S.1
  • 108
    • 0034678354 scopus 로고    scopus 로고
    • Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila
    • Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L. & Montague, R. A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471-490 (2000).
    • (2000) J. Cell Biol. , vol.149 , pp. 471-490
    • Kiehart, D.P.1    Galbraith, C.G.2    Edwards, K.A.3    Rickoll, W.L.4    Montague, R.A.5
  • 110
    • 84949093151 scopus 로고    scopus 로고
    • Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy
    • Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132-1134 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 1132-1134
    • Scarcelli, G.1
  • 111
    • 84875449875 scopus 로고    scopus 로고
    • The cytoplasm of living cells behaves as a poroelastic material
    • Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253-261 (2013).
    • (2013) Nat. Mater. , vol.12 , pp. 253-261
    • Moeendarbary, E.1
  • 112
    • 84903390326 scopus 로고    scopus 로고
    • CellFIT: A cellular force-inference toolkit using curvilinear cell boundaries
    • Brodland, G. W. et al. CellFIT: a cellular force-inference toolkit using curvilinear cell boundaries. PLoS ONE 9, e99116 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e99116
    • Brodland, G.W.1
  • 113
    • 84863710998 scopus 로고    scopus 로고
    • Mechanical stress inference for two dimensional cell arrays
    • Chiou, K. K., Hufnagel, L. & Shraiman, B. I. Mechanical stress inference for two dimensional cell arrays. PLoS Comput. Biol. 8, e1002512 (2012).
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002512
    • Chiou, K.K.1    Hufnagel, L.2    Shraiman, B.I.3
  • 114
    • 84979532625 scopus 로고    scopus 로고
    • Unified quantitative characterization of epithelial tissue development
    • Guirao, B. et al. Unified quantitative characterization of epithelial tissue development. eLife 4, e08519 (2015).
    • (2015) ELife , vol.4 , pp. e08519
    • Guirao, B.1
  • 115
    • 84866010397 scopus 로고    scopus 로고
    • Bayesian inference of force dynamics during morphogenesis
    • Ishihara, S. & Sugimura, K. Bayesian inference of force dynamics during morphogenesis. J. Theor. Biol. 313, 201-211 (2012).
    • (2012) J. Theor. Biol. , vol.313 , pp. 201-211
    • Ishihara, S.1    Sugimura, K.2
  • 116
    • 84884266953 scopus 로고    scopus 로고
    • The mechanical anisotropy in a tissue promotes ordering in hexagonal cell packing
    • Sugimura, K. & Ishihara, S. The mechanical anisotropy in a tissue promotes ordering in hexagonal cell packing. Development 140, 4091-4101 (2013).
    • (2013) Development , vol.140 , pp. 4091-4101
    • Sugimura, K.1    Ishihara, S.2
  • 118
    • 84979642844 scopus 로고    scopus 로고
    • TissueMiner: A multiscale analysis toolkit to quantify how cellular processes create tissue dynamics
    • Etournay, R. et al. TissueMiner: a multiscale analysis toolkit to quantify how cellular processes create tissue dynamics. eLife 5, e14334 (2016).
    • (2016) ELife , vol.5 , pp. e14334
    • Etournay, R.1
  • 119
    • 84867335560 scopus 로고    scopus 로고
    • Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells
    • Maitre, J. L. et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253-256 (2012).
    • (2012) Science , vol.338 , pp. 253-256
    • Maitre, J.L.1
  • 120
    • 78650642920 scopus 로고    scopus 로고
    • Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila
    • Brodland, G. W. et al. Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila. Proc. Natl Acad. Sci. USA 107, 22111-22116 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 22111-22116
    • Brodland, G.W.1
  • 121
    • 77957364208 scopus 로고    scopus 로고
    • Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows
    • Mayer, M., Depken, M., Bois, J. S., Julicher, F. & Grill, S. W. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467, 617-621 (2010).
    • (2010) Nature , vol.467 , pp. 617-621
    • Mayer, M.1    Depken, M.2    Bois, J.S.3    Julicher, F.4    Grill, S.W.5
  • 122
    • 80052054346 scopus 로고    scopus 로고
    • Polar actomyosin contractility destabilizes the position of the cytokinetic furrow
    • Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462-466 (2011).
    • (2011) Nature , vol.476 , pp. 462-466
    • Sedzinski, J.1
  • 123
    • 84869102195 scopus 로고    scopus 로고
    • Finding the weakest link-exploring integrin-mediated mechanical molecular pathways
    • Roca-Cusachs, P., Iskratsch, T. & Sheetz, M. P. Finding the weakest link-exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125, 30253038 (2012).
    • (2012) J. Cell Sci. , vol.125 , pp. 30253038
    • Roca-Cusachs, P.1    Iskratsch, T.2    Sheetz, M.P.3
  • 125
    • 84962235182 scopus 로고    scopus 로고
    • Converging and unique mechanisms of mechanotransduction at adhesion sites
    • Han, M. K. & de Rooij, J. Converging and unique mechanisms of mechanotransduction at adhesion sites. Trends Cell Biol. 26, 612-623 (2016).
    • (2016) Trends Cell Biol. , vol.26 , pp. 612-623
    • Han, M.K.1    De Rooij, J.2
  • 126
    • 84979573607 scopus 로고    scopus 로고
    • Force regulated conformational change of integrin V3
    • Chen, Y., Lee, H., Tong, H., Schwartz, M. & Zhu, C. Force regulated conformational change of integrin V3. Matrix Biol. 60-61, 70-85 (2016).
    • (2016) Matrix Biol. , vol.60-61 , pp. 70-85
    • Chen, Y.1    Lee, H.2    Tong, H.3    Schwartz, M.4    Zhu, C.5
  • 127
    • 80054043810 scopus 로고    scopus 로고
    • Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A
    • Ehrlicher, A. J., Nakamura, F., Hartwig, J. H., Weitz, D. A. & Stossel, T. P. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478, 260-263 (2011).
    • (2011) Nature , vol.478 , pp. 260-263
    • Ehrlicher, A.J.1    Nakamura, F.2    Hartwig, J.H.3    Weitz, D.A.4    Stossel, T.P.5
  • 128
    • 84977675071 scopus 로고    scopus 로고
    • The mechanical response of talin
    • Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 11966
    • Yao, M.1
  • 129
    • 67649598285 scopus 로고    scopus 로고
    • Demonstration of catch bonds between an integrin and its ligand
    • Kong, F., Garcia, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275-1284 (2009).
    • (2009) J. Cell Biol. , vol.185 , pp. 1275-1284
    • Kong, F.1    Garcia, A.J.2    Mould, A.P.3    Humphries, M.J.4    Zhu, C.5
  • 130
    • 77957332682 scopus 로고    scopus 로고
    • Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
    • Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55-60 (2010).
    • (2010) Science , vol.330 , pp. 55-60
    • Coste, B.1
  • 131
    • 84990843535 scopus 로고    scopus 로고
    • Localized force application reveals mechanically sensitive domains of Piezo1
    • Wu, J., Goyal, R. & Grandl, J. Localized force application reveals mechanically sensitive domains of Piezo1. Nat. Commun. 7, 12939 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 12939
    • Wu, J.1    Goyal, R.2    Grandl, J.3
  • 132
    • 59149094538 scopus 로고    scopus 로고
    • Stretching single talin rod molecules activates vinculin binding
    • del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638-641 (2009).
    • (2009) Science , vol.323 , pp. 638-641
    • Del Rio, A.1
  • 133
    • 84905482347 scopus 로고    scopus 로고
    • Force-dependent conformational switch of ?-catenin controls vinculin binding
    • Yao, M. et al. Force-dependent conformational switch of ?-catenin controls vinculin binding. Nat. Commun. 5, 4525 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 4525
    • Yao, M.1
  • 134
    • 84958140109 scopus 로고    scopus 로고
    • Work done by titin protein folding assists muscle contraction
    • Rivas-Pardo, J. A. et al. Work done by titin protein folding assists muscle contraction. Cell Rep. 14, 1339-1347 (2016).
    • (2016) Cell Rep. , vol.14 , pp. 1339-1347
    • Rivas-Pardo, J.A.1
  • 135
    • 77951630040 scopus 로고    scopus 로고
    • Long-lived, high-strength states of ICAM1 bonds to 2 integrin, II: Lifetimes of LFA1 bonds under force in leukocyte signaling
    • Kinoshita, K., Leung, A., Simon, S. & Evans, E. Long-lived, high-strength states of ICAM1 bonds to 2 integrin, II: lifetimes of LFA1 bonds under force in leukocyte signaling. Biophys. J. 98, 1467-1475 (2010).
    • (2010) Biophys. J. , vol.98 , pp. 1467-1475
    • Kinoshita, K.1    Leung, A.2    Simon, S.3    Evans, E.4
  • 136
    • 84988531523 scopus 로고    scopus 로고
    • Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals
    • Ju, L., Chen, Y., Xue, L., Du, X. & Zhu, C. Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals. eLife 5, e15447 (2016).
    • (2016) ELife , vol.5 , pp. e15447
    • Ju, L.1    Chen, Y.2    Xue, L.3    Du, X.4    Zhu, C.5
  • 137
    • 84855163922 scopus 로고    scopus 로고
    • Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin
    • Margadant, F. et al. Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol. 9, e1001223 (2011).
    • (2011) PLoS Biol. , vol.9 , pp. e1001223
    • Margadant, F.1
  • 138
    • 70849127367 scopus 로고    scopus 로고
    • Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites
    • Klotzsch, E. et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl Acad. Sci. USA 106, 1826718272 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 1826718272
    • Klotzsch, E.1
  • 139
    • 84939447610 scopus 로고    scopus 로고
    • Mechanical forces regulate the interactions of fibronectin and collagen i in extracellular matrix
    • Kubow, K. E. et al. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat. Commun. 6, 8026 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 8026
    • Kubow, K.E.1
  • 140
    • 79957761308 scopus 로고    scopus 로고
    • Cysteine shotgun-mass spectrometry (CS-MS) reveals dynamic sequence of protein structure changes within mutant and stressed cells
    • Krieger, C. C. et al. Cysteine shotgun-mass spectrometry (CS-MS) reveals dynamic sequence of protein structure changes within mutant and stressed cells. Proc. Natl Acad. Sci. USA 108, 8269-8274 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 8269-8274
    • Krieger, C.C.1
  • 141
    • 84898467976 scopus 로고    scopus 로고
    • Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation
    • Yao, M. et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).
    • (2014) Sci. Rep. , vol.4 , pp. 4610
    • Yao, M.1
  • 142
    • 84871591464 scopus 로고    scopus 로고
    • Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration
    • Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513-1527 (2012).
    • (2012) Cell , vol.151 , pp. 1513-1527
    • Plotnikov, S.V.1    Pasapera, A.M.2    Sabass, B.3    Waterman, C.M.4
  • 143
    • 84901204167 scopus 로고    scopus 로고
    • Rigidity sensing and adaptation through regulation of integrin types
    • Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 13, 631-637 (2014).
    • (2014) Nat. Mater. , vol.13 , pp. 631-637
    • Elosegui-Artola, A.1
  • 144
    • 84955259420 scopus 로고    scopus 로고
    • Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension
    • Lewis, A. H. & Grandl, J. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. eLife 4, e12088 (2015).
    • (2015) ELife , vol.4 , pp. e12088
    • Lewis, A.H.1    Grandl, J.2
  • 145
    • 44349189707 scopus 로고    scopus 로고
    • Rapid signal transduction in living cells is a unique feature of mechanotransduction
    • Na, S. et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl Acad. Sci. USA 105, 6626-6631 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 6626-6631
    • Na, S.1
  • 146
    • 84934280727 scopus 로고    scopus 로고
    • Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions
    • Case, L. B. et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat. Cell Biol. 17, 880-892 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 880-892
    • Case, L.B.1
  • 147
    • 79958284636 scopus 로고    scopus 로고
    • Role of YAP/TAZ in mechanotransduction
    • Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183 (2011).
    • (2011) Nature , vol.474 , pp. 179-183
    • Dupont, S.1
  • 148
    • 70349496205 scopus 로고    scopus 로고
    • Clustering of 51 integrins determines adhesion strength whereas v3 and talin enable mechanotransduction
    • Roca-Cusachs, P., Gauthier, N. C., del Rio, A. & Sheetz, M. P. Clustering of 51 integrins determines adhesion strength whereas v3 and talin enable mechanotransduction. Proc. Natl Acad. Sci. USA 106, 16245-16250 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 16245-16250
    • Roca-Cusachs, P.1    Gauthier, N.C.2    Del Rio, A.3    Sheetz, M.P.4
  • 149
    • 0041461882 scopus 로고    scopus 로고
    • Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin
    • Jiang, G. Y., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334-337 (2003).
    • (2003) Nature , vol.424 , pp. 334-337
    • Jiang, G.Y.1    Giannone, G.2    Critchley, D.R.3    Fukumoto, E.4    Sheetz, M.P.5
  • 150
    • 84966667300 scopus 로고    scopus 로고
    • A mechanogenetic toolkit for interrogating cell signaling in space and time
    • Seo, D. et al. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell 165, 1507-1518 (2016).
    • (2016) Cell , vol.165 , pp. 1507-1518
    • Seo, D.1
  • 151
    • 70849112126 scopus 로고    scopus 로고
    • Single-cell response to stiffness exhibits muscle-like behavior
    • Mitrossilis, D. et al. Single-cell response to stiffness exhibits muscle-like behavior. Proc. Natl Acad. Sci. USA 106, 18243-18248 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 18243-18248
    • Mitrossilis, D.1
  • 152
    • 84921893960 scopus 로고    scopus 로고
    • Practical aspects of the cellular force inference toolkit (CellFIT)
    • Veldhuis, J. H., Mashburn, D., Hutson, M. S. & Brodland, G. W. Practical aspects of the cellular force inference toolkit (CellFIT). Methods Cell Biol. 125, 331-351 (2015).
    • (2015) Methods Cell Biol. , vol.125 , pp. 331-351
    • Veldhuis, J.H.1    Mashburn, D.2    Hutson, M.S.3    Brodland, G.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.