메뉴 건너뛰기




Volumn 55, Issue , 2016, Pages 119-130

A toolbox to explore the mechanics of living embryonic tissues

Author keywords

Biophysics; Cellular force; Embryonic development; Mechanobiology; Mechanotransduction; Morphogenesis; Tissue mechanics

Indexed keywords

EMBRYO; EMBRYONAL TISSUE; MECHANICS; ANIMAL; ATOMIC FORCE MICROSCOPY; BIOLOGICAL MODEL; FLOW KINETICS; HUMAN; MAMMALIAN EMBRYO; MECHANICAL STRESS; MECHANOTRANSDUCTION; METABOLISM;

EID: 84979466025     PISSN: 10849521     EISSN: 10963634     Source Type: Journal    
DOI: 10.1016/j.semcdb.2016.03.011     Document Type: Review
Times cited : (105)

References (230)
  • 1
    • 0141728404 scopus 로고    scopus 로고
    • How the confocal laser scanning microscope entered biological research
    • Amos W.B., White J.G. How the confocal laser scanning microscope entered biological research. Biol. Cell 2012, 95:335-342.
    • (2012) Biol. Cell , vol.95 , pp. 335-342
    • Amos, W.B.1    White, J.G.2
  • 2
    • 84983965438 scopus 로고
    • Memoir on inventing the confocal scanning microscope
    • Minsky M. Memoir on inventing the confocal scanning microscope. Scanning 1988, 10:128-138.
    • (1988) Scanning , vol.10 , pp. 128-138
    • Minsky, M.1
  • 3
    • 30944450665 scopus 로고    scopus 로고
    • Deep tissue two-photon microscopy
    • Helmchen F., Denk W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2:932-940.
    • (2005) Nat. Methods , vol.2 , pp. 932-940
    • Helmchen, F.1    Denk, W.2
  • 4
    • 0025342635 scopus 로고
    • Two-photon laser scanning fluorescence microscopy
    • Denk W., Strickler J.H., Webb W.W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248:73-76.
    • (1990) Science , vol.248 , pp. 73-76
    • Denk, W.1    Strickler, J.H.2    Webb, W.W.3
  • 5
    • 84908251017 scopus 로고    scopus 로고
    • Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution
    • Chen B.C., et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 2014, 346:1257998.
    • (2014) Science , vol.346 , pp. 1257998
    • Chen, B.C.1
  • 6
    • 56449123775 scopus 로고    scopus 로고
    • Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy
    • Keller P.J., Schmidt A.D., Wittbrodt J., Stelzer E. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 2008, 322.
    • (2008) Science , vol.322
    • Keller, P.J.1    Schmidt, A.D.2    Wittbrodt, J.3    Stelzer, E.4
  • 7
    • 0031663369 scopus 로고    scopus 로고
    • The green fluorescent protein
    • Tsien R.Y. The green fluorescent protein. Annu. Rev. Biochem. 1998, 67.
    • (1998) Annu. Rev. Biochem. , vol.67
    • Tsien, R.Y.1
  • 8
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823.
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 10
    • 84924970415 scopus 로고    scopus 로고
    • The tissue mechanics of vertebrate body elongation and segmentation
    • McMillen P., Holley S.A. The tissue mechanics of vertebrate body elongation and segmentation. Curr. Opin. Genet. Dev. 2015, 32:106-111.
    • (2015) Curr. Opin. Genet. Dev. , vol.32 , pp. 106-111
    • McMillen, P.1    Holley, S.A.2
  • 11
    • 84884386822 scopus 로고    scopus 로고
    • The interplay between cell signalling and mechanics in developmental processes
    • Miller C.J., Davidson L.A. The interplay between cell signalling and mechanics in developmental processes. Nat. Rev. Genet. 2013, 14:733-744.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 733-744
    • Miller, C.J.1    Davidson, L.A.2
  • 12
    • 84878764042 scopus 로고    scopus 로고
    • Mechanics of epithelial tissue homeostasis and morphogenesis
    • Guillot C., Lecuit T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 2013, 340:1185-1189.
    • (2013) Science , vol.340 , pp. 1185-1189
    • Guillot, C.1    Lecuit, T.2
  • 13
    • 84878324673 scopus 로고    scopus 로고
    • Forces in tissue morphogenesis and patterning
    • Heisenberg C.-P., Bellaiche Y. Forces in tissue morphogenesis and patterning. Cell 2013, 153:948-962.
    • (2013) Cell , vol.153 , pp. 948-962
    • Heisenberg, C.-P.1    Bellaiche, Y.2
  • 14
    • 84864267667 scopus 로고    scopus 로고
    • Sculpting organs: mechanical regulation of tissue development
    • Nelson C.M., Gleghorn J.P. Sculpting organs: mechanical regulation of tissue development. Annu. Rev. Biomed. Eng. 2012, 14:129-154.
    • (2012) Annu. Rev. Biomed. Eng. , vol.14 , pp. 129-154
    • Nelson, C.M.1    Gleghorn, J.P.2
  • 16
    • 80054019905 scopus 로고    scopus 로고
    • Force generation, transmission, and integration during cell and tissue morphogenesis
    • Lecuit T., Lenne P.-F., Munro E. Force generation, transmission, and integration during cell and tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 2011, 27:157-184.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 157-184
    • Lecuit, T.1    Lenne, P.-F.2    Munro, E.3
  • 17
    • 79955441991 scopus 로고    scopus 로고
    • Balancing forces: architectural control of mechanotransduction
    • DuFort C.C., Paszek M.J., Weaver V.M. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 2011, 12:308-319.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 308-319
    • DuFort, C.C.1    Paszek, M.J.2    Weaver, V.M.3
  • 18
    • 77951234490 scopus 로고    scopus 로고
    • Developmental biology
    • Martin A.C. Developmental biology. Dev. Biol. 2010, 341:114-125.
    • (2010) Dev. Biol. , vol.341 , pp. 114-125
    • Martin, A.C.1
  • 19
    • 77951228475 scopus 로고    scopus 로고
    • Mechanical control of tissue and organ development
    • Mammoto T., Ingber D.E. Mechanical control of tissue and organ development. Development 2010, 137:1407-1420.
    • (2010) Development , vol.137 , pp. 1407-1420
    • Mammoto, T.1    Ingber, D.E.2
  • 21
    • 67649528138 scopus 로고    scopus 로고
    • Collective cell migration in morphogenesis, regeneration and cancer
    • Friedl P., Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 2009, 10:445-457.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 445-457
    • Friedl, P.1    Gilmour, D.2
  • 22
    • 58049220350 scopus 로고    scopus 로고
    • Mechanotransduction in development: a growing role for contractility
    • Wozniak M.A., Chen C.S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 2009, 10:34-43.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 34-43
    • Wozniak, M.A.1    Chen, C.S.2
  • 23
    • 58049211966 scopus 로고    scopus 로고
    • Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus
    • Wang N., Tytell J.D., Ingber D.E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 2009, 10:75-82.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 75-82
    • Wang, N.1    Tytell, J.D.2    Ingber, D.E.3
  • 25
    • 42449105756 scopus 로고    scopus 로고
    • The forces that shape embryos: physical aspects of convergent extension by cell intercalation
    • Keller R., Shook D., Skoglund P. The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys. Biol. 2008, 5:015007.
    • (2008) Phys. Biol. , vol.5 , pp. 015007
    • Keller, R.1    Shook, D.2    Skoglund, P.3
  • 26
    • 72149120318 scopus 로고    scopus 로고
    • "Developmental mechanics": cellular patterns controlled by adhesion, cortical tension and cell division
    • Lecuit T. "Developmental mechanics": cellular patterns controlled by adhesion, cortical tension and cell division. HFSP J. 2008, 2:72-78.
    • (2008) HFSP J. , vol.2 , pp. 72-78
    • Lecuit, T.1
  • 27
    • 57349197819 scopus 로고    scopus 로고
    • Morphogenetic cell movements: diversity from modular mechanical properties
    • Montell D. Morphogenetic cell movements: diversity from modular mechanical properties. Sci. Signal. 2008, 322:1502.
    • (2008) Sci. Signal. , vol.322 , pp. 1502
    • Montell, D.1
  • 28
    • 36048998478 scopus 로고    scopus 로고
    • Orchestrating size and shape during morphogenesis
    • Lecuit T., Le Goff L. Orchestrating size and shape during morphogenesis. Nature 2007, 450:189-192.
    • (2007) Nature , vol.450 , pp. 189-192
    • Lecuit, T.1    Le Goff, L.2
  • 29
    • 34547191723 scopus 로고    scopus 로고
    • Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis
    • Lecuit T., Lenne P.-F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 2007, 8:633-644.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 633-644
    • Lecuit, T.1    Lenne, P.-F.2
  • 30
    • 33744488545 scopus 로고    scopus 로고
    • Cellular mechanotransduction: putting all the pieces together again
    • Ingber D.E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006, 20:811-827.
    • (2006) FASEB J. , vol.20 , pp. 811-827
    • Ingber, D.E.1
  • 31
    • 33646340966 scopus 로고    scopus 로고
    • Mechanical control of tissue morphogenesis during embryological development
    • Ingber D.E. Mechanical control of tissue morphogenesis during embryological development. Int. J. Dev. Biol. 2006, 50:255-266.
    • (2006) Int. J. Dev. Biol. , vol.50 , pp. 255-266
    • Ingber, D.E.1
  • 32
    • 33748967069 scopus 로고    scopus 로고
    • Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer
    • Nelson C.M., Bissell M.J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 2006, 22:287-309.
    • (2006) Annu. Rev. Cell Dev. Biol. , vol.22 , pp. 287-309
    • Nelson, C.M.1    Bissell, M.J.2
  • 33
    • 27944497333 scopus 로고    scopus 로고
    • Tissue cells feel and respond to the stiffness of their substrate
    • Discher D.E., Janmey P., Wang Y.-l. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310:1139-1143.
    • (2005) Science , vol.310 , pp. 1139-1143
    • Discher, D.E.1    Janmey, P.2    Wang, Y.-L.3
  • 34
    • 6044233419 scopus 로고    scopus 로고
    • Surface mechanics mediate pattern formation in the developing retina
    • Hayashi T., Carthew R.W. Surface mechanics mediate pattern formation in the developing retina. Nature 2004, 431:647-652.
    • (2004) Nature , vol.431 , pp. 647-652
    • Hayashi, T.1    Carthew, R.W.2
  • 35
    • 0038410006 scopus 로고    scopus 로고
    • How we are shaped: the biomechanics of gastrulation
    • Keller R., Davidson L.A., Shook D.R. How we are shaped: the biomechanics of gastrulation. Differentiation 2003, 71:171-205.
    • (2003) Differentiation , vol.71 , pp. 171-205
    • Keller, R.1    Davidson, L.A.2    Shook, D.R.3
  • 36
    • 84925847112 scopus 로고    scopus 로고
    • Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters
    • Ng M.R., Besser A., Brugge J.S., Danuser G. Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters. eLife 2014, 3:e03282.
    • (2014) eLife , vol.3
    • Ng, M.R.1    Besser, A.2    Brugge, J.S.3    Danuser, G.4
  • 37
    • 84872516945 scopus 로고    scopus 로고
    • Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces
    • Mertz A.F., et al. Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:842-847.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 842-847
    • Mertz, A.F.1
  • 38
    • 67650227472 scopus 로고    scopus 로고
    • Physical forces during collective cell migration
    • Trepat X., et al. Physical forces during collective cell migration. Nat. Phys. 2009, 5:426-430.
    • (2009) Nat. Phys. , vol.5 , pp. 426-430
    • Trepat, X.1
  • 39
    • 79957451087 scopus 로고    scopus 로고
    • Collective cell guidance by cooperative intercellular forces
    • Tambe D.T., et al. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 2011, 10:469-475.
    • (2011) Nat. Mater. , vol.10 , pp. 469-475
    • Tambe, D.T.1
  • 40
    • 14044270846 scopus 로고    scopus 로고
    • Force mapping in epithelial cell migration
    • du Roure O., et al. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:2390-2395.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 2390-2395
    • du Roure, O.1
  • 41
    • 0036325856 scopus 로고    scopus 로고
    • Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces
    • Parker K.K., et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 2002, 16:1195-1204.
    • (2002) FASEB J. , vol.16 , pp. 1195-1204
    • Parker, K.K.1
  • 43
    • 84883802117 scopus 로고    scopus 로고
    • Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro
    • Alessandri K., et al. Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:14843-14848.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 14843-14848
    • Alessandri, K.1
  • 44
    • 80054885209 scopus 로고    scopus 로고
    • Stress clamp experiments on multicellular tumor spheroids
    • Montel F., et al. Stress clamp experiments on multicellular tumor spheroids. Phys. Rev. Lett. 2011, 107:188102.
    • (2011) Phys. Rev. Lett. , vol.107 , pp. 188102
    • Montel, F.1
  • 47
    • 84914112690 scopus 로고    scopus 로고
    • Force and the spindle: mechanical cues in mitotic spindle orientation
    • Nestor-Bergmann A., Goddard G., Woolner S. Force and the spindle: mechanical cues in mitotic spindle orientation. Semin. Cell Dev. Biol. 2014, 34:133-139.
    • (2014) Semin. Cell Dev. Biol. , vol.34 , pp. 133-139
    • Nestor-Bergmann, A.1    Goddard, G.2    Woolner, S.3
  • 48
    • 79959955749 scopus 로고    scopus 로고
    • External forces control mitotic spindle positioning
    • Fink J., et al. External forces control mitotic spindle positioning. Nat. Cell Biol. 2011, 13:771-778.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 771-778
    • Fink, J.1
  • 50
    • 84880795993 scopus 로고    scopus 로고
    • Role of the extracellular matrix in regulating stem cell fate
    • Watt F.M., Huck W.T.S. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 2013, 14:467-473.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 467-473
    • Watt, F.M.1    Huck, W.T.S.2
  • 51
    • 67649195858 scopus 로고    scopus 로고
    • Control of stem cell fate by physical interactions with the extracellular matrix
    • Guilak F., et al. Control of stem cell fate by physical interactions with the extracellular matrix. Stem Cell 2009, 5:17-26.
    • (2009) Stem Cell , vol.5 , pp. 17-26
    • Guilak, F.1
  • 52
    • 67649920749 scopus 로고    scopus 로고
    • Growth factors, matrices, and forces combine and control stem cells
    • Discher D.E., Mooney D.J., Zandstra P.W. Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324:1673-1677.
    • (2009) Science , vol.324 , pp. 1673-1677
    • Discher, D.E.1    Mooney, D.J.2    Zandstra, P.W.3
  • 53
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126:677-689.
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 54
    • 1842426730 scopus 로고    scopus 로고
    • Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment
    • McBeath R., Pirone D.M., Nelson C.M., Bhadriraju K., Chen C.S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 2004, 6:483-495.
    • (2004) Dev. Cell , vol.6 , pp. 483-495
    • McBeath, R.1    Pirone, D.M.2    Nelson, C.M.3    Bhadriraju, K.4    Chen, C.S.5
  • 55
    • 23844487086 scopus 로고    scopus 로고
    • Emergent patterns of growth controlled by multicellular form and mechanics
    • Nelson C., et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:11594-11599.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 11594-11599
    • Nelson, C.1
  • 56
    • 85018200780 scopus 로고    scopus 로고
    • Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices
    • Gjorevski N., Piotrowski A.S., Varner V.D., Nelson C.M. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci. Rep. 2015, 5:1-13.
    • (2015) Sci. Rep. , vol.5 , pp. 1-13
    • Gjorevski, N.1    Piotrowski, A.S.2    Varner, V.D.3    Nelson, C.M.4
  • 57
    • 84867887350 scopus 로고    scopus 로고
    • Deconstructing the third dimension-how 3D culture microenvironments alter cellular cues
    • Baker B.M., Chen C.S. Deconstructing the third dimension-how 3D culture microenvironments alter cellular cues. J. Cell Sci. 2012.
    • (2012) J. Cell Sci.
    • Baker, B.M.1    Chen, C.S.2
  • 58
    • 77956304671 scopus 로고    scopus 로고
    • Endogenous patterns of mechanical stress are required for branching morphogenesis
    • Gjorevski N., Nelson C.M. Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr. Biol. 2010, 2:424.
    • (2010) Integr. Biol. , vol.2 , pp. 424
    • Gjorevski, N.1    Nelson, C.M.2
  • 59
    • 33749992857 scopus 로고    scopus 로고
    • Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures
    • Nelson C.M., VanDuijn M.M., Inman J.L., Fletcher D.A. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 2006, 314.
    • (2006) Science , vol.314
    • Nelson, C.M.1    VanDuijn, M.M.2    Inman, J.L.3    Fletcher, D.A.4
  • 60
    • 79959636906 scopus 로고    scopus 로고
    • The physics of cancer: the role of physical interactions and mechanical forces in metastasis
    • Wirtz D., Konstantopoulos K., Searson P.C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 2011, 11.
    • (2011) Nat. Rev. Cancer , vol.11
    • Wirtz, D.1    Konstantopoulos, K.2    Searson, P.C.3
  • 62
    • 24944547482 scopus 로고    scopus 로고
    • Tensional homeostasis and the malignant phenotype
    • Paszek M.J., et al. Tensional homeostasis and the malignant phenotype. Cancer cell 2005, 8:241-254.
    • (2005) Cancer cell , vol.8 , pp. 241-254
    • Paszek, M.J.1
  • 63
    • 84961913016 scopus 로고    scopus 로고
    • Micro and nano-scale technologies for cell mechanics
    • Unal M., et al. Micro and nano-scale technologies for cell mechanics. Nanobiomedicine 2014, 1.
    • (2014) Nanobiomedicine , vol.1
    • Unal, M.1
  • 64
    • 84901432650 scopus 로고    scopus 로고
    • Force measurement tools to explore cadherin mechanotransduction
    • Stapleton S.C., Chopra A., Chen C.S. Force measurement tools to explore cadherin mechanotransduction. Cell Commun. Adhes. 2014, 21:193-205.
    • (2014) Cell Commun. Adhes. , vol.21 , pp. 193-205
    • Stapleton, S.C.1    Chopra, A.2    Chen, C.S.3
  • 65
    • 84887878152 scopus 로고    scopus 로고
    • Review on cell mechanics: experimental and modeling approaches
    • Rodriguez M.L., McGarry P.J., Sniadecki N.J. Review on cell mechanics: experimental and modeling approaches. Appl. Mech. Rev. 2013, 65:060801.
    • (2013) Appl. Mech. Rev. , vol.65 , pp. 060801
    • Rodriguez, M.L.1    McGarry, P.J.2    Sniadecki, N.J.3
  • 66
    • 84882614930 scopus 로고    scopus 로고
    • Let's push things forward: disruptive technologies and the mechanics of tissue assembly
    • Varner V.D., Nelson C.M. Let's push things forward: disruptive technologies and the mechanics of tissue assembly. Integr. Biol. 2013, 5:1162.
    • (2013) Integr. Biol. , vol.5 , pp. 1162
    • Varner, V.D.1    Nelson, C.M.2
  • 67
    • 84884414816 scopus 로고    scopus 로고
    • Quantitative approaches to uncover physical mechanisms of tissue morphogenesis
    • Gleghorn J.P., Manivannan S., Nelson C.M. Quantitative approaches to uncover physical mechanisms of tissue morphogenesis. Curr. Opin. Biotechnol. 2013, 24:954-961.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 954-961
    • Gleghorn, J.P.1    Manivannan, S.2    Nelson, C.M.3
  • 68
    • 77956704547 scopus 로고    scopus 로고
    • The mechanics of development: models and methods for tissue morphogenesis
    • Gjorevski N., Nelson C.M. The mechanics of development: models and methods for tissue morphogenesis. Birth Defects Res. C: Embryo Today: Rev. 2010, 90:193-202.
    • (2010) Birth Defects Res. C: Embryo Today: Rev. , vol.90 , pp. 193-202
    • Gjorevski, N.1    Nelson, C.M.2
  • 69
    • 67651154456 scopus 로고    scopus 로고
    • Cell mechanics: dissecting the physical responses of cells to force
    • Hoffman B.D., Crocker J.C. Cell mechanics: dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 2009, 11:259-288.
    • (2009) Annu. Rev. Biomed. Eng. , vol.11 , pp. 259-288
    • Hoffman, B.D.1    Crocker, J.C.2
  • 70
    • 47749110611 scopus 로고    scopus 로고
    • Measurement techniques for cellular biomechanics in vitro
    • Addae-Mensah K.A., Wikswo J.P. Measurement techniques for cellular biomechanics in vitro. Exp. Biol. Med. 2008, 233:792-809.
    • (2008) Exp. Biol. Med. , vol.233 , pp. 792-809
    • Addae-Mensah, K.A.1    Wikswo, J.P.2
  • 71
    • 69949150648 scopus 로고    scopus 로고
    • Biology and physics of cell shape changes in development
    • Paluch E., Heisenberg C.-P. Biology and physics of cell shape changes in development. Curr. Biol. 2009, 19:R790-R799.
    • (2009) Curr. Biol. , vol.19 , pp. R790-R799
    • Paluch, E.1    Heisenberg, C.-P.2
  • 72
    • 84930575028 scopus 로고    scopus 로고
    • Decrease in cell volume generates contractile forces driving dorsal closure
    • Saias L., et al. Decrease in cell volume generates contractile forces driving dorsal closure. Dev. Cell 2015, 33:611-621.
    • (2015) Dev. Cell , vol.33 , pp. 611-621
    • Saias, L.1
  • 73
    • 84945266164 scopus 로고    scopus 로고
    • Embryo-scale tissue mechanics during Drosophila gastrulation movements
    • Krzic U., et al. Embryo-scale tissue mechanics during Drosophila gastrulation movements. Nat. Commun. 2015, 6:1-12.
    • (2015) Nat. Commun. , vol.6 , pp. 1-12
    • Krzic, U.1
  • 75
    • 84899411638 scopus 로고    scopus 로고
    • Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation
    • He B., Doubrovinski K., Polyakov O., Wieschaus E. Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation. Nature 2014, 508:392-396.
    • (2014) Nature , vol.508 , pp. 392-396
    • He, B.1    Doubrovinski, K.2    Polyakov, O.3    Wieschaus, E.4
  • 76
    • 84860837377 scopus 로고    scopus 로고
    • Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway
    • Bosveld F., Bonnet I., Guirao B., Tlili S., Wang Z. Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science 2012.
    • (2012) Science
    • Bosveld, F.1    Bonnet, I.2    Guirao, B.3    Tlili, S.4    Wang, Z.5
  • 78
    • 67649840196 scopus 로고    scopus 로고
    • Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues
    • Legant W.R., et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:10097-10102.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 10097-10102
    • Legant, W.R.1
  • 79
    • 67650095318 scopus 로고    scopus 로고
    • Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension
    • Butler L.C., et al. Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension. Nat. Cell Biol. 2009, 11:859-864.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 859-864
    • Butler, L.C.1
  • 80
    • 67349262454 scopus 로고    scopus 로고
    • Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation
    • Blanchard G.B., et al. Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. Nat. Methods 2009, 6:458-486.
    • (2009) Nat. Methods , vol.6 , pp. 458-486
    • Blanchard, G.B.1
  • 81
    • 84979532625 scopus 로고    scopus 로고
    • Unified quantitative characterization of epithelial tissue development
    • Guirao B., et al. Unified quantitative characterization of epithelial tissue development. eLife 2015, 4.
    • (2015) eLife , vol.4
    • Guirao, B.1
  • 82
    • 84943609025 scopus 로고    scopus 로고
    • Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing
    • Etournay R., et al. Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. eLife 2015, 4.
    • (2015) eLife , vol.4
    • Etournay, R.1
  • 83
    • 84866253307 scopus 로고    scopus 로고
    • Mechanical state, material properties and continuous description of an epithelial tissue
    • Bonnet I., et al. Mechanical state, material properties and continuous description of an epithelial tissue. J. R. Soc. Interface 2012, 9:2614-2623.
    • (2012) J. R. Soc. Interface , vol.9 , pp. 2614-2623
    • Bonnet, I.1
  • 84
    • 82455171913 scopus 로고    scopus 로고
    • Growing up is stressful: biophysical laws of morphogenesis
    • Grill S.W. Growing up is stressful: biophysical laws of morphogenesis. Curr. Opin. Genet. Dev. 2011, 21:647-652.
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 647-652
    • Grill, S.W.1
  • 85
    • 82455164096 scopus 로고    scopus 로고
    • Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis
    • Trier S.M., Davidson L.A. Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis. Curr. Opin. Genet. Dev. 2011, 21:664-670.
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 664-670
    • Trier, S.M.1    Davidson, L.A.2
  • 94
    • 84949108682 scopus 로고    scopus 로고
    • Tissue cartography: compressing bio-image data by dimensional reduction
    • Heemskerk I., Streichan S.J. Tissue cartography: compressing bio-image data by dimensional reduction. Nat. Methods 2015, 12:1139-1142.
    • (2015) Nat. Methods , vol.12 , pp. 1139-1142
    • Heemskerk, I.1    Streichan, S.J.2
  • 95
    • 84872067915 scopus 로고    scopus 로고
    • Regulated tissue fluidity steers zebrafish body elongation
    • Lawton A.K., et al. Regulated tissue fluidity steers zebrafish body elongation. Development 2013, 140:573-582.
    • (2013) Development , vol.140 , pp. 573-582
    • Lawton, A.K.1
  • 96
    • 77954516397 scopus 로고    scopus 로고
    • A random cell motility gradient downstream of FGF controls elongation of an amniote embryo
    • Bénazéraf B., et al. A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature 2010, 466:248-252.
    • (2010) Nature , vol.466 , pp. 248-252
    • Bénazéraf, B.1
  • 97
    • 46249132804 scopus 로고    scopus 로고
    • In vitro whole-organ imaging: 4D quantification of growing mouse limb buds
    • Boot M.J., et al. In vitro whole-organ imaging: 4D quantification of growing mouse limb buds. Nat. Methods 2008, 5:609-612.
    • (2008) Nat. Methods , vol.5 , pp. 609-612
    • Boot, M.J.1
  • 99
    • 28444491145 scopus 로고    scopus 로고
    • Is the mechanical activity of epithelial cells controlled by deformations or forces?
    • Saez A., Buguin A., Silberzan P., Ladoux B. Is the mechanical activity of epithelial cells controlled by deformations or forces?. Biophys. J. 2005, 89:L52-4.
    • (2005) Biophys. J. , vol.89 , pp. L52-L54
    • Saez, A.1    Buguin, A.2    Silberzan, P.3    Ladoux, B.4
  • 100
    • 0035002155 scopus 로고    scopus 로고
    • Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates
    • Balaban N.Q., et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 2001, 3:466-472.
    • (2001) Nat. Cell Biol. , vol.3 , pp. 466-472
    • Balaban, N.Q.1
  • 101
    • 70350719219 scopus 로고    scopus 로고
    • Biomaterials
    • Ahmed W.W., et al. Biomaterials. Biomaterials 2010, 31:250-258.
    • (2010) Biomaterials , vol.31 , pp. 250-258
    • Ahmed, W.W.1
  • 102
    • 0019355002 scopus 로고
    • The dynamic response of vascular endothelial cells to fluid shear stress
    • Dewey C.F., Bussolari S.R., Gimbrone M.A., Davies P.F. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 1981, 103:177.
    • (1981) J. Biomech. Eng. , vol.103 , pp. 177
    • Dewey, C.F.1    Bussolari, S.R.2    Gimbrone, M.A.3    Davies, P.F.4
  • 103
    • 84925945177 scopus 로고    scopus 로고
    • Active diffusion positions the nucleus in mouse oocytes
    • Almonacid M., et al. Active diffusion positions the nucleus in mouse oocytes. Nat. Cell Biol. 2015, 17:470-479.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 470-479
    • Almonacid, M.1
  • 104
    • 33846625096 scopus 로고    scopus 로고
    • Nonequilibrium mechanics of active cytoskeletal networks
    • Mizuno D., Tardin C., Schmidt C.F., MacKintosh F.C. Nonequilibrium mechanics of active cytoskeletal networks. Science 2007, 315:370-373.
    • (2007) Science , vol.315 , pp. 370-373
    • Mizuno, D.1    Tardin, C.2    Schmidt, C.F.3    MacKintosh, F.C.4
  • 105
    • 85047699197 scopus 로고    scopus 로고
    • Active fluidization of polymer networks through molecular motors
    • Humphrey D., Duggan C., Saha D., Smith D., Käs J. Active fluidization of polymer networks through molecular motors. Nature 2002, 416:413-416.
    • (2002) Nature , vol.416 , pp. 413-416
    • Humphrey, D.1    Duggan, C.2    Saha, D.3    Smith, D.4    Käs, J.5
  • 107
    • 70350452764 scopus 로고    scopus 로고
    • The role of fluctuations and stress on the effective viscosity of cell aggregates
    • Marmottant P., et al. The role of fluctuations and stress on the effective viscosity of cell aggregates. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:17271-17275.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 17271-17275
    • Marmottant, P.1
  • 108
    • 48749131039 scopus 로고    scopus 로고
    • Quantitative differences in tissue surface tension influence zebrafish germ layer positioning
    • Schötz E.M., et al. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP J. 2008, 2:42-56.
    • (2008) HFSP J. , vol.2 , pp. 42-56
    • Schötz, E.M.1
  • 109
    • 0031956939 scopus 로고    scopus 로고
    • Viscoelastic properties of living embryonic tissues: a quantitative study
    • Forgacs G., Foty R.A., Shafrir Y., Steinberg M.S. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 1998, 74:2227-2234.
    • (1998) Biophys. J. , vol.74 , pp. 2227-2234
    • Forgacs, G.1    Foty, R.A.2    Shafrir, Y.3    Steinberg, M.S.4
  • 110
    • 0001111374 scopus 로고
    • Liquid properties of embryonic tissues: measurement of interfacial tensions
    • Foty R., Forgacs G., Pfleger C., Steinberg M. Liquid properties of embryonic tissues: measurement of interfacial tensions. Phys. Rev. Lett. 1994, 72:2298-2301.
    • (1994) Phys. Rev. Lett. , vol.72 , pp. 2298-2301
    • Foty, R.1    Forgacs, G.2    Pfleger, C.3    Steinberg, M.4
  • 111
    • 84954523974 scopus 로고    scopus 로고
    • Measuring forces and stresses in situ in living tissues
    • Sugimura K., Lenne P.F., Graner F. Measuring forces and stresses in situ in living tissues. Development 2016, 143:186-196.
    • (2016) Development , vol.143 , pp. 186-196
    • Sugimura, K.1    Lenne, P.F.2    Graner, F.3
  • 113
    • 0014662994 scopus 로고
    • In vitro production of chromosomal lesions with an argon laser microbeam
    • Berns M.W., Olson R.S., Rounds D.E. In vitro production of chromosomal lesions with an argon laser microbeam. Nature 1969, 221:74-75.
    • (1969) Nature , vol.221 , pp. 74-75
    • Berns, M.W.1    Olson, R.S.2    Rounds, D.E.3
  • 115
    • 0037326694 scopus 로고    scopus 로고
    • Mechanisms of pulsed laser ablation of biological tissues
    • Vogel A., Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 2003, 103:577-644.
    • (2003) Chem. Rev. , vol.103 , pp. 577-644
    • Vogel, A.1    Venugopalan, V.2
  • 116
    • 67649910478 scopus 로고    scopus 로고
    • Probing embryonic tissue mechanics with laser hole drilling
    • Ma X., Lynch H.E., Scully P.C., Hutson M.S. Probing embryonic tissue mechanics with laser hole drilling. Phys. Biol. 2009, 6:036004.
    • (2009) Phys. Biol. , vol.6 , pp. 036004
    • Ma, X.1    Lynch, H.E.2    Scully, P.C.3    Hutson, M.S.4
  • 118
    • 84875271619 scopus 로고    scopus 로고
    • Force communication in multicellular tissues addressed by laser nanosurgery
    • Colombelli J., Solon J. Force communication in multicellular tissues addressed by laser nanosurgery. Cell Tissue Res. 2012, 352:133-147.
    • (2012) Cell Tissue Res. , vol.352 , pp. 133-147
    • Colombelli, J.1    Solon, J.2
  • 121
    • 84867298752 scopus 로고    scopus 로고
    • Forces driving epithelial spreading in zebrafish gastrulation
    • Behrndt M., et al. Forces driving epithelial spreading in zebrafish gastrulation. Science 2012, 338:257-260.
    • (2012) Science , vol.338 , pp. 257-260
    • Behrndt, M.1
  • 122
    • 77957364208 scopus 로고    scopus 로고
    • Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows
    • Mayer M., Depken M., Bois J.S., Jülicher F., Grill S.W. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 2010, 467:617-621.
    • (2010) Nature , vol.467 , pp. 617-621
    • Mayer, M.1    Depken, M.2    Bois, J.S.3    Jülicher, F.4    Grill, S.W.5
  • 123
    • 57049160895 scopus 로고    scopus 로고
    • Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis
    • Rauzi M., Verant P., Lecuit T., Lenne P.-F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 2008, 10:1401-1457.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1401-1457
    • Rauzi, M.1    Verant, P.2    Lecuit, T.3    Lenne, P.-F.4
  • 125
    • 84905966334 scopus 로고    scopus 로고
    • Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation
    • Kasza K.E., Farrell D.L., Zallen J.A. Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 2014, 111:11732-11737.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 11732-11737
    • Kasza, K.E.1    Farrell, D.L.2    Zallen, J.A.3
  • 126
    • 84949468870 scopus 로고    scopus 로고
    • Mechanical coupling between endoderm invagination and axis extension in Drosophila
    • Lye C.M., et al. Mechanical coupling between endoderm invagination and axis extension in Drosophila. PLoS Biol. 2015, 13:e1002292.
    • (2015) PLoS Biol. , vol.13
    • Lye, C.M.1
  • 127
    • 0037418891 scopus 로고    scopus 로고
    • Forces for morphogenesis investigated with laser microsurgery and quantitative modeling
    • Hutson M.S., et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 2003, 300:145-149.
    • (2003) Science , vol.300 , pp. 145-149
    • Hutson, M.S.1
  • 128
    • 39149130598 scopus 로고    scopus 로고
    • The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing
    • Farhadifar R., Röper J.-C., Aigouy B., Eaton S., Jülicher F. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 2007, 17:2095-2104.
    • (2007) Curr. Biol. , vol.17 , pp. 2095-2104
    • Farhadifar, R.1    Röper, J.-C.2    Aigouy, B.3    Eaton, S.4    Jülicher, F.5
  • 129
    • 70450228482 scopus 로고    scopus 로고
    • Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary
    • Landsberg K.P., et al. Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr. Biol. 2009, 19:1950-1955.
    • (2009) Curr. Biol. , vol.19 , pp. 1950-1955
    • Landsberg, K.P.1
  • 130
    • 84884217043 scopus 로고    scopus 로고
    • A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila wing disc
    • LeGoff L., Rouault H., Lecuit T. A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila wing disc. Development 2013, 140:4051-4059.
    • (2013) Development , vol.140 , pp. 4051-4059
    • LeGoff, L.1    Rouault, H.2    Lecuit, T.3
  • 131
    • 56649107901 scopus 로고    scopus 로고
    • Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation
    • Caussinus E., Colombelli J., Affolter M. Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr. Biol. 2008, 18:1727-1734.
    • (2008) Curr. Biol. , vol.18 , pp. 1727-1734
    • Caussinus, E.1    Colombelli, J.2    Affolter, M.3
  • 132
    • 84929315796 scopus 로고    scopus 로고
    • YAP is essential for tissue tension to ensure vertebrate 3D body shape
    • Porazinski S., et al. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 2015, 1-16.
    • (2015) Nature , pp. 1-16
    • Porazinski, S.1
  • 133
    • 84893369795 scopus 로고    scopus 로고
    • Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly
    • Campinho P., et al. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat. Cell Biol. 2013, 15:1405-1414.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1405-1414
    • Campinho, P.1
  • 134
    • 84939811028 scopus 로고    scopus 로고
    • Cortical tension allocates the first inner cells of the mammalian embryo
    • Samarage C.R., et al. Cortical tension allocates the first inner cells of the mammalian embryo. Dev. Cell 2015, 1-14.
    • (2015) Dev. Cell , pp. 1-14
    • Samarage, C.R.1
  • 135
    • 0035252546 scopus 로고    scopus 로고
    • Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo
    • Grill S.W., Gönczy P., Stelzer E.H., Hyman A.A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 2001, 409:630-633.
    • (2001) Nature , vol.409 , pp. 630-633
    • Grill, S.W.1    Gönczy, P.2    Stelzer, E.H.3    Hyman, A.A.4
  • 136
    • 0034678354 scopus 로고    scopus 로고
    • Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila
    • Kiehart D.P., Galbraith C.G., Edwards K.A., Rickoll W.L., Montague R.A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 2000, 149:471-490.
    • (2000) J. Cell Biol. , vol.149 , pp. 471-490
    • Kiehart, D.P.1    Galbraith, C.G.2    Edwards, K.A.3    Rickoll, W.L.4    Montague, R.A.5
  • 138
    • 84982078039 scopus 로고
    • On the locus and nature of the forces causing gastrulation in the embryos of Dendraster excentricus
    • Moore A.R., Burt A.S. On the locus and nature of the forces causing gastrulation in the embryos of Dendraster excentricus. J. Exp. Zool. 1939, 82:159-171.
    • (1939) J. Exp. Zool. , vol.82 , pp. 159-171
    • Moore, A.R.1    Burt, A.S.2
  • 139
    • 62649167968 scopus 로고    scopus 로고
    • Axisymmetric drop shape analysis for estimating the surface tension of cell aggregates by centrifugation
    • Kalantarian A., et al. Axisymmetric drop shape analysis for estimating the surface tension of cell aggregates by centrifugation. Biophys. J. 2009, 96:1606-1616.
    • (2009) Biophys. J. , vol.96 , pp. 1606-1616
    • Kalantarian, A.1
  • 140
    • 0014565007 scopus 로고
    • Equilibrium measurements of embryonic chick cell adhesiveness, I. Shape equilibrium in centrifugal fields
    • Phillips H.M., Steinberg M.S. Equilibrium measurements of embryonic chick cell adhesiveness, I. Shape equilibrium in centrifugal fields. Proc. Natl. Acad. Sci. U. S. A. 1969, 64:121.
    • (1969) Proc. Natl. Acad. Sci. U. S. A. , vol.64 , pp. 121
    • Phillips, H.M.1    Steinberg, M.S.2
  • 141
    • 84921758037 scopus 로고    scopus 로고
    • Tissue cohesion and the mechanics of cell rearrangement
    • David R., et al. Tissue cohesion and the mechanics of cell rearrangement. Development 2014, 141:3672-3682.
    • (2014) Development , vol.141 , pp. 3672-3682
    • David, R.1
  • 143
    • 78650642920 scopus 로고    scopus 로고
    • Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila
    • Brodland G.W., et al. Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:22111-22116.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 22111-22116
    • Brodland, G.W.1
  • 145
    • 84863710998 scopus 로고    scopus 로고
    • Mechanical stress inference for two dimensional cell arrays
    • Chiou K.K., Hufnagel L., Shraiman B.I. Mechanical stress inference for two dimensional cell arrays. PLoS Comput. Biol. 2012, 8:e1002512.
    • (2012) PLoS Comput. Biol. , vol.8
    • Chiou, K.K.1    Hufnagel, L.2    Shraiman, B.I.3
  • 146
    • 84903390326 scopus 로고    scopus 로고
    • CellFIT: a cellular force-inference toolkit using curvilinear cell boundaries
    • Brodland G.W., et al. CellFIT: a cellular force-inference toolkit using curvilinear cell boundaries. PLoS ONE 2014, 9:e99116.
    • (2014) PLoS ONE , vol.9
    • Brodland, G.W.1
  • 147
    • 84892486850 scopus 로고    scopus 로고
    • Comparative study of non-invasive force and stress inference methods in tissue
    • Ishihara S., et al. Comparative study of non-invasive force and stress inference methods in tissue. Eur. Phys. J. E 2013, 36:45.
    • (2013) Eur. Phys. J. E , vol.36 , pp. 45
    • Ishihara, S.1
  • 148
    • 84884266953 scopus 로고    scopus 로고
    • The mechanical anisotropy in a tissue promotes ordering in hexagonal cell packing
    • Sugimura K., Ishihara S. The mechanical anisotropy in a tissue promotes ordering in hexagonal cell packing. Development 2013, 140:4091-4101.
    • (2013) Development , vol.140 , pp. 4091-4101
    • Sugimura, K.1    Ishihara, S.2
  • 149
    • 0000968818 scopus 로고
    • The mechanical properties of the cell surface I. The cell elastimeter
    • Mitchison J.M., Swann M.M. The mechanical properties of the cell surface I. The cell elastimeter. J. Exp. Biol. 1954.
    • (1954) J. Exp. Biol.
    • Mitchison, J.M.1    Swann, M.M.2
  • 150
    • 78651149939 scopus 로고
    • Mechanical properties of the red cell membrane
    • Rand R.P., Burton A.C. Mechanical properties of the red cell membrane. Biophys. J. 1964, 4:115-135.
    • (1964) Biophys. J. , vol.4 , pp. 115-135
    • Rand, R.P.1    Burton, A.C.2
  • 151
    • 0033990244 scopus 로고    scopus 로고
    • Micropipette aspiration of living cells
    • Hochmuth R.M. Micropipette aspiration of living cells. J. Biomech. 2000, 33:15-22.
    • (2000) J. Biomech. , vol.33 , pp. 15-22
    • Hochmuth, R.M.1
  • 152
    • 84934979507 scopus 로고    scopus 로고
    • The application of micropipette aspiration in molecular mechanics of single cells
    • Lee L.M., Liu A.P. The application of micropipette aspiration in molecular mechanics of single cells. J. Nanotechnol. Eng. Med. 2015, 5:040902.
    • (2015) J. Nanotechnol. Eng. Med. , vol.5 , pp. 040902
    • Lee, L.M.1    Liu, A.P.2
  • 153
    • 84881474606 scopus 로고    scopus 로고
    • A soft cortex is essential for asymmetric spindle positioning in mouse oocytes
    • Chaigne A., et al. A soft cortex is essential for asymmetric spindle positioning in mouse oocytes. Nat. Cell Biol. 2013, 15:958-966.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 958-966
    • Chaigne, A.1
  • 155
    • 84867335560 scopus 로고    scopus 로고
    • Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells
    • Maitre J.L., et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 2012, 338:253-256.
    • (2012) Science , vol.338 , pp. 253-256
    • Maitre, J.L.1
  • 156
    • 84938280157 scopus 로고    scopus 로고
    • Automated micro-aspiration of mouse embryo limb bud tissue
    • Wen J., et al. Automated micro-aspiration of mouse embryo limb bud tissue. IEEE Robotics and Automation 2015, 2667-2672.
    • (2015) IEEE Robotics and Automation , pp. 2667-2672
    • Wen, J.1
  • 157
    • 78650833739 scopus 로고    scopus 로고
    • Surprisingly simple mechanical behavior of a complex embryonic tissue
    • von Dassow M., Strother J.A., Davidson L.A. Surprisingly simple mechanical behavior of a complex embryonic tissue. PLoS ONE 2010, 5:e15359.
    • (2010) PLoS ONE , vol.5
    • von Dassow, M.1    Strother, J.A.2    Davidson, L.A.3
  • 158
    • 44449087047 scopus 로고    scopus 로고
    • Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
    • Neuman K.C., Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 2008, 5:491-505.
    • (2008) Nat. Methods , vol.5 , pp. 491-505
    • Neuman, K.C.1    Nagy, A.2
  • 159
    • 84923238415 scopus 로고    scopus 로고
    • Investigating cell mechanics with atomic force microscopy
    • Haase K., Pelling A.E. Investigating cell mechanics with atomic force microscopy. J. R. Soc. Interface 2015, 12. 20140970-20140970.
    • (2015) J. R. Soc. Interface , vol.12 , pp. 20140970
    • Haase, K.1    Pelling, A.E.2
  • 160
    • 84921849624 scopus 로고    scopus 로고
    • Atomic force microscopy-based force measurements on animal cells and tissues
    • Elsevier, (Chapter 12)
    • Gautier H.O.B., et al. Atomic force microscopy-based force measurements on animal cells and tissues. Methods in Cell Biology: Biophysical Methods in Cell Biology 2015, 211-235. Elsevier, (Chapter 12).
    • (2015) Methods in Cell Biology: Biophysical Methods in Cell Biology , pp. 211-235
    • Gautier, H.O.B.1
  • 161
    • 27744587245 scopus 로고    scopus 로고
    • Force measurements with the atomic force microscope: technique, interpretation and applications
    • Butt H.-J., Cappella B., Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 2005, 59:1-152.
    • (2005) Surf. Sci. Rep. , vol.59 , pp. 1-152
    • Butt, H.-J.1    Cappella, B.2    Kappl, M.3
  • 162
    • 82455210889 scopus 로고    scopus 로고
    • Atomic force microscopy and its contribution to understanding the development of the nervous system
    • Franze K. Atomic force microscopy and its contribution to understanding the development of the nervous system. Curr. Opin. Genet. Dev. 2011, 21:530-537.
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 530-537
    • Franze, K.1
  • 163
    • 84884813491 scopus 로고    scopus 로고
    • Developmental biology
    • Hara Y., et al. Developmental biology. Dev. Biol. 2013, 382:482-495.
    • (2013) Dev. Biol. , vol.382 , pp. 482-495
    • Hara, Y.1
  • 165
    • 0028875028 scopus 로고
    • The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis
    • Moore S.W., Keller R.E., Koehl M.A. The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis. Development (Cambridge, England) 1995, 121:3131-3140.
    • (1995) Development (Cambridge, England) , vol.121 , pp. 3131-3140
    • Moore, S.W.1    Keller, R.E.2    Koehl, M.A.3
  • 166
    • 0028278605 scopus 로고
    • A fiber optic system for measuring dynamic mechanical properties of embryonic tissues
    • Moore S.W. A fiber optic system for measuring dynamic mechanical properties of embryonic tissues. IEEE Trans. Biomed. Eng. 1994, 41:45-50.
    • (1994) IEEE Trans. Biomed. Eng. , vol.41 , pp. 45-50
    • Moore, S.W.1
  • 167
    • 43149088966 scopus 로고    scopus 로고
    • Tensile forces govern germ-layer organization in zebrafish
    • Krieg M., et al. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 2008, 10:429-436.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 429-436
    • Krieg, M.1
  • 168
    • 26444460262 scopus 로고    scopus 로고
    • Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-Cadherin
    • Ulrich F., et al. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-Cadherin. Dev. Cell 2005, 9:555-564.
    • (2005) Dev. Cell , vol.9 , pp. 555-564
    • Ulrich, F.1
  • 169
    • 78649951770 scopus 로고    scopus 로고
    • Control of directed cell migration in vivo by membrane-to-cortex attachment
    • Diz-Muñoz A., et al. Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol. 2010, 8:e1000544.
    • (2010) PLoS Biol. , vol.8
    • Diz-Muñoz, A.1
  • 170
    • 34249097683 scopus 로고    scopus 로고
    • Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation
    • Elkin B.S., Azeloglu E.U., Costa K.D., Morrison B. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 2007, 24:812-822.
    • (2007) J. Neurotrauma , vol.24 , pp. 812-822
    • Elkin, B.S.1    Azeloglu, E.U.2    Costa, K.D.3    Morrison, B.4
  • 171
  • 172
    • 84908099277 scopus 로고    scopus 로고
    • Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain
    • Iwashita M., Kataoka N., Toida K., Kosodo Y. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain. Development 2014, 141:3793-3798.
    • (2014) Development , vol.141 , pp. 3793-3798
    • Iwashita, M.1    Kataoka, N.2    Toida, K.3    Kosodo, Y.4
  • 173
    • 84928938465 scopus 로고    scopus 로고
    • Anisotropic stress orients remodelling of mammalian limb bud ectoderm
    • Lau K., et al. Anisotropic stress orients remodelling of mammalian limb bud ectoderm. Nat. Cell Biol. 2015, 17:569-579.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 569-579
    • Lau, K.1
  • 174
    • 1042300692 scopus 로고    scopus 로고
    • Mechanical asymmetry in the embryonic chick heart during looping
    • Zamir E.A., Srinivasan V., Perucchio R., Taber L.A. Mechanical asymmetry in the embryonic chick heart during looping. Ann. Biomed. Eng. 2003, 31:1327-1336.
    • (2003) Ann. Biomed. Eng. , vol.31 , pp. 1327-1336
    • Zamir, E.A.1    Srinivasan, V.2    Perucchio, R.3    Taber, L.A.4
  • 175
    • 14344252454 scopus 로고    scopus 로고
    • Material properties and residual stress in the stage 12 chick heart during cardiac looping
    • Zamir E.A., Taber L.A. Material properties and residual stress in the stage 12 chick heart during cardiac looping. J. Biomech. Eng. 2004, 126:823.
    • (2004) J. Biomech. Eng. , vol.126 , pp. 823
    • Zamir, E.A.1    Taber, L.A.2
  • 176
    • 33745136103 scopus 로고    scopus 로고
    • Morphogenetic adaptation of the looping embryonic heart to altered mechanical loads
    • Nerurkar N.L., Ramasubramanian A., Taber L.A. Morphogenetic adaptation of the looping embryonic heart to altered mechanical loads. Dev. Dyn. 2006, 235:1822-1829.
    • (2006) Dev. Dyn. , vol.235 , pp. 1822-1829
    • Nerurkar, N.L.1    Ramasubramanian, A.2    Taber, L.A.3
  • 177
    • 84921840096 scopus 로고    scopus 로고
    • Probing regional mechanical properties of embryonic tissue using microindentation and optical coherence tomography
    • Springer, New York, NY
    • Filas B.A., Xu G., Taber L.A. Probing regional mechanical properties of embryonic tissue using microindentation and optical coherence tomography. Methods in Molecular Biology: Tissue Morphogenesis 2015, 3-16. Springer, New York, NY.
    • (2015) Methods in Molecular Biology: Tissue Morphogenesis , pp. 3-16
    • Filas, B.A.1    Xu, G.2    Taber, L.A.3
  • 180
    • 0041423614 scopus 로고    scopus 로고
    • Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium
    • Farge E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 2003, 13:1365-1377.
    • (2003) Curr. Biol. , vol.13 , pp. 1365-1377
    • Farge, E.1
  • 181
    • 51449123136 scopus 로고    scopus 로고
    • Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos
    • Desprat N., Supatto W., Pouille P.-A., Beaurepaire E., Farge E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell 2008, 15:470-477.
    • (2008) Dev. Cell , vol.15 , pp. 470-477
    • Desprat, N.1    Supatto, W.2    Pouille, P.-A.3    Beaurepaire, E.4    Farge, E.5
  • 182
    • 84889237781 scopus 로고    scopus 로고
    • Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria
    • Brunet T., et al. Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nat. Commun. 2014, 4:1-15.
    • (2014) Nat. Commun. , vol.4 , pp. 1-15
    • Brunet, T.1
  • 183
    • 0033066120 scopus 로고    scopus 로고
    • Stresses at the cell-to-substrate interface during locomotion of fibroblasts
    • Dembo M., Wang Y.L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 1999, 76:2307-2316.
    • (1999) Biophys. J. , vol.76 , pp. 2307-2316
    • Dembo, M.1    Wang, Y.L.2
  • 184
    • 84863489002 scopus 로고    scopus 로고
    • Mapping of mechanical strains and stresses around quiescent engineered three-dimensional epithelial tissues
    • Gjorevski N., Nelson C.M. Mapping of mechanical strains and stresses around quiescent engineered three-dimensional epithelial tissues. Biophys. J. 2012, 103:152-162.
    • (2012) Biophys. J. , vol.103 , pp. 152-162
    • Gjorevski, N.1    Nelson, C.M.2
  • 185
    • 78649717029 scopus 로고    scopus 로고
    • Measurement of mechanical tractions exerted by cells in three-dimensional matrices
    • Legant W.R., et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 2010, 7:969-971.
    • (2010) Nat. Methods , vol.7 , pp. 969-971
    • Legant, W.R.1
  • 186
    • 84922496658 scopus 로고    scopus 로고
    • Force production and mechanical accommodation during convergent extension
    • Zhou J., Pal S., Maiti S., Davidson L.A. Force production and mechanical accommodation during convergent extension. Development 2015, 142:692-701.
    • (2015) Development , vol.142 , pp. 692-701
    • Zhou, J.1    Pal, S.2    Maiti, S.3    Davidson, L.A.4
  • 188
    • 45849138873 scopus 로고    scopus 로고
    • Optical tweezers for single cells
    • Zhang H., Liu K.K. Optical tweezers for single cells. J. R. Soc. Interface 2008, 5:671-690.
    • (2008) J. R. Soc. Interface , vol.5 , pp. 671-690
    • Zhang, H.1    Liu, K.K.2
  • 189
    • 0032548920 scopus 로고    scopus 로고
    • Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics
    • Welte M.A., Gross S.P., Postner M., Block S.M., Wieschaus E.F. Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 1998, 92:547-557.
    • (1998) Cell , vol.92 , pp. 547-557
    • Welte, M.A.1    Gross, S.P.2    Postner, M.3    Block, S.M.4    Wieschaus, E.F.5
  • 190
    • 57149145788 scopus 로고    scopus 로고
    • Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets
    • Shubeita G.T., et al. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 2008, 135:1098-1107.
    • (2008) Cell , vol.135 , pp. 1098-1107
    • Shubeita, G.T.1
  • 192
    • 84861401482 scopus 로고    scopus 로고
    • Recent advances in magnetic tweezers
    • De Vlaminck I., Dekker C. Recent advances in magnetic tweezers. Annu. Rev. Biophys. 2012, 41:453-472.
    • (2012) Annu. Rev. Biophys. , vol.41 , pp. 453-472
    • De Vlaminck, I.1    Dekker, C.2
  • 196
    • 84924405927 scopus 로고    scopus 로고
    • Magnetic flattening of stem-cell spheroids indicates a size-dependent elastocapillary transition
    • Mazuel F., et al. Magnetic flattening of stem-cell spheroids indicates a size-dependent elastocapillary transition. Phys. Rev. Lett. 2015, 114:098105.
    • (2015) Phys. Rev. Lett. , vol.114 , pp. 098105
    • Mazuel, F.1
  • 197
    • 50349116112 scopus 로고
    • The physical properties of cytoplasm: a study by means of the magnetic particle method Part I. Experimental
    • Crick F., Hughes A. The physical properties of cytoplasm: a study by means of the magnetic particle method Part I. Experimental. Exp. Cell Res. 1950, 1.
    • (1950) Exp. Cell Res. , vol.1
    • Crick, F.1    Hughes, A.2
  • 198
    • 0027172919 scopus 로고
    • Mechanotransduction across the cell surface and through the cytoskeleton
    • Wang N., Butler J.P., Ingber D.E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993, 260:1124-1127.
    • (1993) Science , vol.260 , pp. 1124-1127
    • Wang, N.1    Butler, J.P.2    Ingber, D.E.3
  • 199
    • 0029331890 scopus 로고
    • Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry
    • Wang N., Ingber D.E. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem. Cell Biol. 1995, 73:327-335.
    • (1995) Biochem. Cell Biol. , vol.73 , pp. 327-335
    • Wang, N.1    Ingber, D.E.2
  • 200
    • 84855946671 scopus 로고    scopus 로고
    • A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration
    • Weber G.F., Bjerke M.A., DeSimone D.W. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev. Cell 2012, 22:104-115.
    • (2012) Dev. Cell , vol.22 , pp. 104-115
    • Weber, G.F.1    Bjerke, M.A.2    DeSimone, D.W.3
  • 201
    • 79961136469 scopus 로고    scopus 로고
    • On the growth and form of the gut
    • Savin T., et al. On the growth and form of the gut. Nature 2012, 476:57-62.
    • (2012) Nature , vol.476 , pp. 57-62
    • Savin, T.1
  • 202
    • 84863348088 scopus 로고    scopus 로고
    • Mechanical force alters morphogenetic movements and segmental gene expression patterns during Drosophila embryogenesis
    • Kumar A., Shivashankar G.V. Mechanical force alters morphogenetic movements and segmental gene expression patterns during Drosophila embryogenesis. PLoS ONE 2012, 7:e33089.
    • (2012) PLoS ONE , vol.7
    • Kumar, A.1    Shivashankar, G.V.2
  • 203
    • 84938494049 scopus 로고    scopus 로고
    • Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure
    • Fernández-Sánchez M.E., et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 2015, 523:92-95.
    • (2015) Nature , vol.523 , pp. 92-95
    • Fernández-Sánchez, M.E.1
  • 206
    • 67650285016 scopus 로고    scopus 로고
    • Particle-tracking microrheology of living cells: principles and applications
    • Wirtz D. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 2009, 38:301-326.
    • (2009) Annu. Rev. Biophys. , vol.38 , pp. 301-326
    • Wirtz, D.1
  • 207
    • 33845358144 scopus 로고    scopus 로고
    • Bio-microrheology: a frontier in microrheology
    • Weihs D., Mason T.G., Teitell M.A. Bio-microrheology: a frontier in microrheology. Biophys. J. 2006, 91:4296-4305.
    • (2006) Biophys. J. , vol.91 , pp. 4296-4305
    • Weihs, D.1    Mason, T.G.2    Teitell, M.A.3
  • 208
    • 84907369302 scopus 로고    scopus 로고
    • Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy
    • Guo M., et al. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 2014, 158:822-832.
    • (2014) Cell , vol.158 , pp. 822-832
    • Guo, M.1
  • 209
    • 84944151171 scopus 로고    scopus 로고
    • Active cell mechanics: measurement and theory
    • Ahmed W.W., Fodor É., Betz T. Active cell mechanics: measurement and theory. Biochim. Biophys. Acta 2015, 1853:3083-3094.
    • (2015) Biochim. Biophys. Acta , vol.1853 , pp. 3083-3094
    • Ahmed, W.W.1    Fodor, É.2    Betz, T.3
  • 210
    • 33744821342 scopus 로고    scopus 로고
    • Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos
    • Daniels B.R., Masi B.C., Wirtz D. Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys. J. 2006, 90:4712-4719.
    • (2006) Biophys. J. , vol.90 , pp. 4712-4719
    • Daniels, B.R.1    Masi, B.C.2    Wirtz, D.3
  • 211
    • 84928242470 scopus 로고    scopus 로고
    • The mechanical properties of early drosophila embryos measured by high-speed video microrheology
    • Wessel A.D., Gumalla M., Grosshans J., Schmidt C.F. The mechanical properties of early drosophila embryos measured by high-speed video microrheology. Biophys. J. 2015, 108:1899-1907.
    • (2015) Biophys. J. , vol.108 , pp. 1899-1907
    • Wessel, A.D.1    Gumalla, M.2    Grosshans, J.3    Schmidt, C.F.4
  • 212
    • 79960098421 scopus 로고    scopus 로고
    • Genetically encoded force sensors for measuring mechanical forces in proteins
    • Wang Y., Meng F., Sachs F. Genetically encoded force sensors for measuring mechanical forces in proteins. Commun. Integr. Biol. 2011, 4:385-390.
    • (2011) Commun. Integr. Biol. , vol.4 , pp. 385-390
    • Wang, Y.1    Meng, F.2    Sachs, F.3
  • 213
    • 79959458043 scopus 로고    scopus 로고
    • Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer
    • Miyawaki A. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu. Rev. Biochem. 2011, 80:357-373.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 357-373
    • Miyawaki, A.1
  • 214
    • 77954486800 scopus 로고    scopus 로고
    • Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics
    • Grashoff C., et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 2010, 466:263-266.
    • (2010) Nature , vol.466 , pp. 263-266
    • Grashoff, C.1
  • 215
    • 44349176807 scopus 로고    scopus 로고
    • A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ
    • Meng F., Suchyna T.M., Sachs F. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 2008, 275:3072-3087.
    • (2008) FEBS J. , vol.275 , pp. 3072-3087
    • Meng, F.1    Suchyna, T.M.2    Sachs, F.3
  • 216
    • 84864506988 scopus 로고    scopus 로고
    • E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch
    • Borghi N., et al. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:12568-12573.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 12568-12573
    • Borghi, N.1
  • 217
    • 84856440471 scopus 로고    scopus 로고
    • Visualizing mechanical tension across membrane receptors with a fluorescent sensor
    • Stabley D.R., Jurchenko C., Marshall S.S., Salaita K.S. Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat. Methods 2011, 9:64-67.
    • (2011) Nat. Methods , vol.9 , pp. 64-67
    • Stabley, D.R.1    Jurchenko, C.2    Marshall, S.S.3    Salaita, K.S.4
  • 218
    • 84878611663 scopus 로고    scopus 로고
    • Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1
    • Conway D.E., et al. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr. Biol. 2013, 23:1024-1030.
    • (2013) Curr. Biol. , vol.23 , pp. 1024-1030
    • Conway, D.E.1
  • 219
    • 84936084959 scopus 로고    scopus 로고
    • Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes
    • Jurchenko C., Salaita K.S. Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell. Biol. 2015, 35:2570-2582.
    • (2015) Mol. Cell. Biol. , vol.35 , pp. 2570-2582
    • Jurchenko, C.1    Salaita, K.S.2
  • 220
    • 84866424053 scopus 로고    scopus 로고
    • Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells
    • Poh Y.-C., et al. Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nat. Commun. 2012, 3:866-910.
    • (2012) Nat. Commun. , vol.3 , pp. 866-910
    • Poh, Y.-C.1
  • 221
    • 84884243072 scopus 로고    scopus 로고
    • Molecular tension sensors report forces generated by single integrin molecules in living cells
    • Morimatsu M., Mekhdjian A.H., Adhikari A.S., Dunn A.R. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 2013, 13:3985-3989.
    • (2013) Nano Lett. , vol.13 , pp. 3985-3989
    • Morimatsu, M.1    Mekhdjian, A.H.2    Adhikari, A.S.3    Dunn, A.R.4
  • 222
    • 84901317365 scopus 로고    scopus 로고
    • Mechanical feedback through e-cadherin promotes direction sensingduring collective cell migration
    • Cai D., et al. Mechanical feedback through e-cadherin promotes direction sensingduring collective cell migration. Cell 2014, 157:1146-1159.
    • (2014) Cell , vol.157 , pp. 1146-1159
    • Cai, D.1
  • 223
    • 84895503972 scopus 로고    scopus 로고
    • Mechanical control of the sense of touch by β-spectrin
    • Krieg M., Dunn A.R., Goodman M.B. Mechanical control of the sense of touch by β-spectrin. Nat. Cell Biol. 2014, 16:224-233.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 224-233
    • Krieg, M.1    Dunn, A.R.2    Goodman, M.B.3
  • 224
    • 85027919980 scopus 로고    scopus 로고
    • Real time FRET based detection of mechanical stress in cytoskeletal and extracellular matrix proteins
    • Meng F., Suchyna T.M., Lazakovitch E., Gronostajski R.M., Sachs F. Real time FRET based detection of mechanical stress in cytoskeletal and extracellular matrix proteins. Cell. Mol. Bioeng. 2010, 4:148-159.
    • (2010) Cell. Mol. Bioeng. , vol.4 , pp. 148-159
    • Meng, F.1    Suchyna, T.M.2    Lazakovitch, E.3    Gronostajski, R.M.4    Sachs, F.5
  • 226
    • 33846820108 scopus 로고    scopus 로고
    • VASP governs actin dynamics by modulating filament anchoring
    • Trichet L., Campas O., Sykes C., Plastino J. VASP governs actin dynamics by modulating filament anchoring. Biophys. J. 2007, 92:1081-1089.
    • (2007) Biophys. J. , vol.92 , pp. 1081-1089
    • Trichet, L.1    Campas, O.2    Sykes, C.3    Plastino, J.4
  • 227
    • 84895067766 scopus 로고    scopus 로고
    • Quantifying cell-generated mechanical forces within living embryonic tissues
    • Campas O., et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 2014, 11:183-189.
    • (2014) Nat. Methods , vol.11 , pp. 183-189
    • Campas, O.1
  • 228
    • 84921859464 scopus 로고    scopus 로고
    • Generation of biocompatible droplets for in vivo and in vitro measurement of cell- generated mechanical stresses
    • Elsevier, (Chapter 20), E.K. Paluch (Ed.)
    • Lucio A.A., Ingber D.E., Campas O. Generation of biocompatible droplets for in vivo and in vitro measurement of cell- generated mechanical stresses. Methods in Cell Biology: Biophysical Methods in Cell Biology, vol. 125 2015, 3-16. Elsevier, (Chapter 20). E.K. Paluch (Ed.).
    • (2015) Methods in Cell Biology: Biophysical Methods in Cell Biology, vol. 125 , pp. 3-16
    • Lucio, A.A.1    Ingber, D.E.2    Campas, O.3
  • 229
    • 84867886120 scopus 로고    scopus 로고
    • Cadherins in collective cell migration of mesenchymal cells
    • Theveneau E., Mayor R. Cadherins in collective cell migration of mesenchymal cells. Curr. Opin. Cell Biol. 2012, 24:677-684.
    • (2012) Curr. Opin. Cell Biol. , vol.24 , pp. 677-684
    • Theveneau, E.1    Mayor, R.2
  • 230
    • 77953539835 scopus 로고    scopus 로고
    • Keeping in touch with contact inhibition of locomotion
    • Mayor R., Carmona-Fontaine C. Keeping in touch with contact inhibition of locomotion. Trends Cell Biol. 2010, 20:319-328.
    • (2010) Trends Cell Biol. , vol.20 , pp. 319-328
    • Mayor, R.1    Carmona-Fontaine, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.