메뉴 건너뛰기




Volumn 18, Issue 5, 2016, Pages 540-548

Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity

Author keywords

[No Author keywords available]

Indexed keywords

ACTIN; FIBRONECTIN; INTEGRIN; MYOSIN; REGULATOR PROTEIN; TALIN; UNCLASSIFIED DRUG; VINCULIN; YAP PROTEIN; FOCAL ADHESION KINASE; PHOSPHOPROTEIN; PROTEIN BINDING; SIGNAL TRANSDUCING ADAPTOR PROTEIN; YAP PROTEIN, MOUSE;

EID: 84963600077     PISSN: 14657392     EISSN: 14764679     Source Type: Journal    
DOI: 10.1038/ncb3336     Document Type: Article
Times cited : (562)

References (56)
  • 1
    • 77955580383 scopus 로고    scopus 로고
    • Stretchy proteins on stretchy substrates: The important elements of integrin-mediated rigidity sensing
    • Moore, S. W., Roca-Cusachs, P., & Sheetz, M. P. Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev. Cell 19, 194-206 (2010
    • (2010) Dev. Cell , vol.19 , pp. 194-206
    • Moore, S.W.1    Roca-Cusachs, P.2    Sheetz, M.P.3
  • 2
    • 24944547482 scopus 로고    scopus 로고
    • Tensional homeostasis and the malignant phenotype
    • Paszek, M. J., et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241-254 (2005
    • (2005) Cancer Cell , vol.8 , pp. 241-254
    • Paszek, M.J.1
  • 3
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689 (2006
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 4
    • 58149230940 scopus 로고    scopus 로고
    • Traction dynamics of filopodia on compliant substrates
    • Chan, C. E., & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687-1691 (2008
    • (2008) Science , vol.322 , pp. 1687-1691
    • Chan, C.E.1    Odde, D.J.2
  • 5
    • 84901204167 scopus 로고    scopus 로고
    • Rigidity sensing and adaptation through regulation of integrin types
    • Elosegui-Artola, A., et al. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 13, 631-637 (2014
    • (2014) Nat. Mater. , vol.13 , pp. 631-637
    • Elosegui-Artola, A.1
  • 6
    • 84938746663 scopus 로고    scopus 로고
    • Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch
    • Case, L. B., & Waterman, C. M. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 17, 955-963 (2015
    • (2015) Nat. Cell Biol. , vol.17 , pp. 955-963
    • Case, L.B.1    Waterman, C.M.2
  • 7
    • 84871591464 scopus 로고    scopus 로고
    • Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration
    • Plotnikov, S. V., Pasapera, A. M., Sabass, B., & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513-1527 (2012
    • (2012) Cell , vol.151 , pp. 1513-1527
    • Plotnikov, S.V.1    Pasapera, A.M.2    Sabass, B.3    Waterman, C.M.4
  • 8
    • 84933050468 scopus 로고    scopus 로고
    • Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing
    • Gupta, M., et al. Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat. Commun. 6, 7525 (2015
    • (2015) Nat. Commun. , vol.6 , pp. 7525
    • Gupta, M.1
  • 9
    • 84907324202 scopus 로고    scopus 로고
    • Geometry regulates traction stresses in adherent cells
    • Oakes, P. W., Banerjee, S., Marchetti, M. C., & Gardel, M. L. Geometry regulates traction stresses in adherent cells. Biophys. J. 107, 825-833 (2014
    • (2014) Biophys. J. , vol.107 , pp. 825-833
    • Oakes, P.W.1    Banerjee, S.2    Marchetti, M.C.3    Gardel, M.L.4
  • 10
    • 79958284636 scopus 로고    scopus 로고
    • Role of YAP/TAZ in mechanotransduction
    • Dupont, S., et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183 (2011
    • (2011) Nature , vol.474 , pp. 179-183
    • Dupont, S.1
  • 11
    • 49449111131 scopus 로고    scopus 로고
    • Traction forces and rigidity sensing regulate cell functions
    • Ghibaudo, M., et al. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4, 1836-1843 (2008
    • (2008) Soft Matter , vol.4 , pp. 1836-1843
    • Ghibaudo, M.1
  • 12
    • 84878598076 scopus 로고    scopus 로고
    • 1-And-v-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments
    • Schiller, H. B., et al.-1-And-v-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat. Cell Biol. 15, 625-636 (2013
    • (2013) Nat. Cell Biol. , vol.15 , pp. 625-636
    • Schiller, H.B.1
  • 13
    • 84859467404 scopus 로고    scopus 로고
    • Cells test substrate rigidity by local contractions on submicrometer pillars
    • Ghassemi, S., et al. Cells test substrate rigidity by local contractions on submicrometer pillars. Proc. Natl Acad. Sci. USA 109, 5328-5333 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 5328-5333
    • Ghassemi, S.1
  • 14
    • 77950187758 scopus 로고    scopus 로고
    • Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact
    • Califano, J. P., & Reinhart-King, C. A. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3, 68-75 (2010
    • (2010) Cell. Mol. Bioeng. , vol.3 , pp. 68-75
    • Califano, J.P.1    Reinhart-King, C.A.2
  • 15
    • 84924352126 scopus 로고    scopus 로고
    • Cells as liquid motors: Mechanosensitivity emerges from collective dynamics of actomyosin cortex
    • Etienne, J., et al. Cells as liquid motors: mechanosensitivity emerges from collective dynamics of actomyosin cortex. Proc. Natl Acad. Sci. USA 112, 2740-2745 (2015
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 2740-2745
    • Etienne, J.1
  • 16
    • 84869102195 scopus 로고    scopus 로고
    • Finding the weakest link-exploring integrin-mediated mechanical molecular pathways
    • Roca-Cusachs, P., Iskratsch, T., & Sheetz, M. P. Finding the weakest link-exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125, 3025-3038 (2012
    • (2012) J. Cell Sci. , vol.125 , pp. 3025-3038
    • Roca-Cusachs, P.1    Iskratsch, T.2    Sheetz, M.P.3
  • 17
    • 84880217477 scopus 로고    scopus 로고
    • The Yin-Yang of rigidity sensing: How forces and mechanical properties regulate the cellular response to materials
    • Schoen, I., Pruitt, B. L., & Vogel, V. The Yin-Yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials. Annu. Rev. Mater. Res. 43, 589-618 (2013
    • (2013) Annu. Rev. Mater. Res. , vol.43 , pp. 589-618
    • Schoen, I.1    Pruitt, B.L.2    Vogel, V.3
  • 18
    • 84948715926 scopus 로고    scopus 로고
    • Extracellular rigidity sensing by talin isoform-specific mechanical linkages
    • Austen, K., et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597-1606 (2015
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1597-1606
    • Austen, K.1
  • 19
    • 84855163922 scopus 로고    scopus 로고
    • Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin
    • Margadant, F., et al. Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol. 9, e1001223 (2011
    • (2011) PLoS Biol. , vol.9 , pp. e1001223
    • Margadant, F.1
  • 20
    • 70349496205 scopus 로고    scopus 로고
    • Clustering of-5-1 integrins determines adhesion strength whereas-v-3 and talin enable mechanotransduction
    • Roca-Cusachs, P., Gauthier, N. C., del Rio, A., & Sheetz, M. P. Clustering of-5-1 integrins determines adhesion strength whereas-v-3 and talin enable mechanotransduction. Proc. Natl Acad. Sci. USA 106, 16245-16250 (2009
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 16245-16250
    • Roca-Cusachs, P.1    Gauthier, N.C.2    Del Rio, A.3    Sheetz, M.P.4
  • 21
    • 51049100594 scopus 로고    scopus 로고
    • Talin depletion reveals independence of initial cell spreading from integrin activation and traction
    • Zhang, X., et al. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat. Cell Biol. 10, 1062-1068 (2008
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1062-1068
    • Zhang, X.1
  • 22
    • 59149094538 scopus 로고    scopus 로고
    • Stretching single talin rod molecules activates vinculin binding
    • del Rio, A., et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638-641 (2009
    • (2009) Science , vol.323 , pp. 638-641
    • Del Rio, A.1
  • 23
    • 33846030511 scopus 로고    scopus 로고
    • Coincidence of actin filaments and talin is required to activate vinculin
    • Chen, H., Choudhury, D. M., & Craig, S. W. Coincidence of actin filaments and talin is required to activate vinculin. J. Biol. Chem. 281, 40389-40398 (2006
    • (2006) J. Biol. Chem. , vol.281 , pp. 40389-40398
    • Chen, H.1    Choudhury, D.M.2    Craig, S.W.3
  • 24
    • 33845987101 scopus 로고    scopus 로고
    • Structural basis of integrin activation by talin
    • Wegener, K. L., et al. Structural basis of integrin activation by talin. Cell 128, 171-182 (2007
    • (2007) Cell , vol.128 , pp. 171-182
    • Wegener, K.L.1
  • 25
    • 84898467976 scopus 로고    scopus 로고
    • Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation
    • Yao, M., et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014
    • (2014) Sci. Rep. , vol.4 , pp. 4610
    • Yao, M.1
  • 26
    • 67649598285 scopus 로고    scopus 로고
    • Demonstration of catch bonds between an integrin and its ligand
    • Kong, F., Garcia, A. J., Mould, A. P., Humphries, M. J., & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275-1284 (2009
    • (2009) J. Cell Biol. , vol.185 , pp. 1275-1284
    • Kong, F.1    Garcia, A.J.2    Mould, A.P.3    Humphries, M.J.4    Zhu, C.5
  • 27
    • 84876053270 scopus 로고    scopus 로고
    • Integrin-dependent force transmission to the extracellular matrix by-Actinin triggers adhesion maturation
    • Roca-Cusachs, P. Integrin-dependent force transmission to the extracellular matrix by-Actinin triggers adhesion maturation. Proc. Natl Acad. Sci. USA 110, E1361-E1370 (2013
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. E1361-E1370
    • Roca-Cusachs, P.1
  • 28
    • 33744829519 scopus 로고    scopus 로고
    • An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton
    • Tanentzapf, G., & Brown, N. H. An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nat. Cell Biol. 8, 601-606 (2006
    • (2006) Nat. Cell Biol. , vol.8 , pp. 601-606
    • Tanentzapf, G.1    Brown, N.H.2
  • 29
    • 84898491914 scopus 로고    scopus 로고
    • Force-dependent vinculin binding to talin in live cells: A crucial step in anchoring the actin cytoskeleton to focal adhesions
    • Hirata, H., Tatsumi, H., Lim, C. T., & Sokabe, M. Force-dependent vinculin binding to talin in live cells: a crucial step in anchoring the actin cytoskeleton to focal adhesions. Am. J. Physiol. Cell Physiol. 306, C607-C620 (2014
    • (2014) Am. J. Physiol. Cell Physiol. , vol.306 , pp. C607-C620
    • Hirata, H.1    Tatsumi, H.2    Lim, C.T.3    Sokabe, M.4
  • 30
    • 33744929406 scopus 로고    scopus 로고
    • A conformational switch in vinculin drives formation and dynamics of a talin-vinculin complex at focal adhesions
    • Cohen, D. M., Kutscher, B., Chen, H., Murphy, D. B., & Craig, S. W. A conformational switch in vinculin drives formation and dynamics of a talin-vinculin complex at focal adhesions. J. Biol. Chem. 281, 16006-16015 (2006
    • (2006) J. Biol. Chem. , vol.281 , pp. 16006-16015
    • Cohen, D.M.1    Kutscher, B.2    Chen, H.3    Murphy, D.B.4    Craig, S.W.5
  • 31
    • 36849069902 scopus 로고    scopus 로고
    • Vinculin controls focal adhesion formation by direct interactions with talin and actin
    • Humphries, J. D., et al. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 179, 1043-1057 (2007
    • (2007) J. Cell Biol. , vol.179 , pp. 1043-1057
    • Humphries, J.D.1
  • 32
    • 84881446010 scopus 로고    scopus 로고
    • Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment
    • Bangasser, B. L., Rosenfeld, S. S., & Odde, D. J. Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment. Biophys. J. 105, 581-592 (2013
    • (2013) Biophys. J. , vol.105 , pp. 581-592
    • Bangasser, B.L.1    Rosenfeld, S.S.2    Odde, D.J.3
  • 33
    • 84890313947 scopus 로고    scopus 로고
    • Master equation-based analysis of a motor-clutch model for cell traction force
    • Bangasser, B. L., & Odde, D. J. Master equation-based analysis of a motor-clutch model for cell traction force. Cell. Mol. Bioeng. 6, 449-459 (2013
    • (2013) Cell. Mol. Bioeng. , vol.6 , pp. 449-459
    • Bangasser, B.L.1    Odde, D.J.2
  • 34
    • 74049126062 scopus 로고    scopus 로고
    • New PI(4 5)P2-And membrane proximal integrin-binding motifs in the talin head control-3-integrin clustering
    • Saltel, F., et al. New PI(4, 5)P2-And membrane proximal integrin-binding motifs in the talin head control-3-integrin clustering. J. Cell Biol. 187, 715-731 (2009
    • (2009) J. Cell Biol. , vol.187 , pp. 715-731
    • Saltel, F.1
  • 35
    • 84933177566 scopus 로고    scopus 로고
    • Alternative mechanisms for talin to mediate integrin function
    • Klapholz, B., et al. Alternative mechanisms for talin to mediate integrin function. Curr. Biol. 25, 847-857 (2015
    • (2015) Curr. Biol. , vol.25 , pp. 847-857
    • Klapholz, B.1
  • 37
    • 84934280727 scopus 로고    scopus 로고
    • Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions
    • Case, L. B., et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat. Cell Biol. 17, 880-892 (2015
    • (2015) Nat. Cell Biol. , vol.17 , pp. 880-892
    • Case, L.B.1
  • 38
    • 84880642716 scopus 로고    scopus 로고
    • Vinculin-Actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth
    • Thievessen, I., et al. Vinculin-Actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. J. Cell Biol. 202, 163-177 (2013
    • (2013) J. Cell Biol. , vol.202 , pp. 163-177
    • Thievessen, I.1
  • 39
    • 45849111041 scopus 로고    scopus 로고
    • Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation
    • Roca-Cusachs, P., et al. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J. 94, 4984-4995 (2008
    • (2008) Biophys. J. , vol.94 , pp. 4984-4995
    • Roca-Cusachs, P.1
  • 40
    • 84883059455 scopus 로고    scopus 로고
    • Nuclear lamin-A scales with tissue stiffness and enhances matrixdirected differentiation
    • Swift, J., et al. Nuclear lamin-A scales with tissue stiffness and enhances matrixdirected differentiation. Science 341, 1240104 (2013
    • (2013) Science , vol.341 , pp. 1240104
    • Swift, J.1
  • 41
    • 79955441991 scopus 로고    scopus 로고
    • Balancing forces: Architectural control of mechanotransduction
    • DuFort, C. C., Paszek, M. J., & Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12, 308-319 (2011
    • (2011) Nat. Rev. Mol. Cell Biol. , Issue.12 , pp. 308-319
    • DuFort, C.C.1    Paszek, M.J.2    Weaver, V.M.3
  • 42
    • 84925776048 scopus 로고    scopus 로고
    • Disease implications of the Hippo/YAP pathway
    • Plouffe, S. W., Hong, A. W., & Guan, K. L. Disease implications of the Hippo/YAP pathway. Trends Mol. Med. 21, 212-222 (2015
    • (2015) Trends Mol. Med. , vol.21 , pp. 212-222
    • Plouffe, S.W.1    Hong, A.W.2    Guan, K.L.3
  • 43
    • 84859332670 scopus 로고    scopus 로고
    • Talin contains a C-Terminal calpain2 cleavage site important in focal adhesion dynamics
    • Bate, N., et al. Talin contains a C-Terminal calpain2 cleavage site important in focal adhesion dynamics. PLoS ONE 7, e34461 (2012
    • (2012) PLoS ONE , vol.7 , pp. e34461
    • Bate, N.1
  • 44
    • 33751578411 scopus 로고    scopus 로고
    • Talin1 regulates TCR-mediated LFA-1 function
    • Simonson, W. T., Franco, S. J., & Huttenlocher, A. Talin1 regulates TCR-mediated LFA-1 function. J. Immunol. 177, 7707-7714 (2006
    • (2006) J. Immunol. , vol.177 , pp. 7707-7714
    • Simonson, W.T.1    Franco, S.J.2    Huttenlocher, A.3
  • 45
    • 0023609864 scopus 로고
    • Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding-specificity in cell-Adhesion
    • Pierschbacher, M. D., & Ruoslahti, E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding-specificity in cell-Adhesion. J. Biol. Chem. 262, 17294-17298 (1987
    • (1987) J. Biol. Chem. , vol.262 , pp. 17294-17298
    • Pierschbacher, M.D.1    Ruoslahti, E.2
  • 46
    • 0026063230 scopus 로고
    • Monoclonal antibodies to ligand-occupied conformers of integrin-IIb-3 (glycoprotein IIb-IIIa) alter receptor affinity, specificity, and function
    • Frelinger, A. L. 3rd, Du, X. P., Plow, E. F., & Ginsberg, M. H. Monoclonal antibodies to ligand-occupied conformers of integrin-IIb-3 (glycoprotein IIb-IIIa) alter receptor affinity, specificity, and function. J. Biol. Chem. 266, 17106-17111 (1991
    • (1991) J. Biol. Chem. , vol.266 , pp. 17106-17111
    • Frelinger, A.L.1    Du, X.P.2    Plow, E.F.3    Ginsberg, M.H.4
  • 47
    • 0037340857 scopus 로고    scopus 로고
    • Microrheology of human lung epithelial cells measured by atomic force microscopy
    • Alcaraz, J., et al. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84, 2071-2079 (2003
    • (2003) Biophys. J. , vol.84 , pp. 2071-2079
    • Alcaraz, J.1
  • 48
    • 36449007442 scopus 로고
    • Calibration of atomic-force microscope tips
    • Hutter, J. L., & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868-1873 (1993
    • (1993) Rev. Sci. Instrum. , vol.64 , pp. 1868-1873
    • Hutter, J.L.1    Bechhoefer, J.2
  • 49
    • 84864966601 scopus 로고    scopus 로고
    • Mechanical waves during tissue expansion
    • Serra-Picamal, X., et al. Mechanical waves during tissue expansion. Nat. Phys. 8, U628-U666 (2012
    • (2012) Nat. Phys. , vol.8 , pp. U628-U666
    • Serra-Picamal, X.1
  • 51
    • 84907480649 scopus 로고    scopus 로고
    • Image analysis for the quantitative comparison of stress fibers and focal adhesions
    • Elosegui-Artola, A., et al. Image analysis for the quantitative comparison of stress fibers and focal adhesions. PLoS ONE 9, e107393 (2014
    • (2014) PLoS ONE , vol.9 , pp. e107393
    • Elosegui-Artola, A.1
  • 52
    • 84941203625 scopus 로고    scopus 로고
    • Fluorescence biomembrane force probe: Concurrent quantitation of receptor-ligand kinetics and binding-induced intracellular signaling on a single cell
    • Chen, Y., et al. Fluorescence biomembrane force probe: concurrent quantitation of receptor-ligand kinetics and binding-induced intracellular signaling on a single cell. J. Vis. Exp. 102, e52975 (2015
    • (2015) J. Vis. Exp. , vol.102 , pp. e52975
    • Chen, Y.1
  • 53
    • 0037031906 scopus 로고    scopus 로고
    • Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling
    • Takagi, J., Petre, B. M., Walz, T., & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599-611 (2002
    • (2002) Cell , vol.110 , pp. 599-611
    • Takagi, J.1    Petre, B.M.2    Walz, T.3    Springer, T.A.4
  • 54
    • 0031682733 scopus 로고    scopus 로고
    • Measuring two-dimensional receptor-ligand binding kinetics by micropipette
    • Chesla, S. E., Selvaraj, P., & Zhu, C. Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys. J. 75, 1553-1572 (1998
    • (1998) Biophys. J. , vol.75 , pp. 1553-1572
    • Chesla, S.E.1    Selvaraj, P.2    Zhu, C.3
  • 55
    • 77950830916 scopus 로고    scopus 로고
    • Measuring receptor-ligand binding kinetics on cell surfaces: From adhesion frequency to thermal fluctuation methods
    • Chen, W., Zarnitsyna, V. I., Sarangapani, K. K., Huang, J., & Zhu, C. Measuring receptor-ligand binding kinetics on cell surfaces: from adhesion frequency to thermal fluctuation methods. Cell. Mol. Bioeng. 1, 276-288 (2008
    • (2008) Cell. Mol. Bioeng. , vol.1 , pp. 276-288
    • Chen, W.1    Zarnitsyna, V.I.2    Sarangapani, K.K.3    Huang, J.4    Zhu, C.5
  • 56
    • 78149245953 scopus 로고    scopus 로고
    • Forcing switch from short-To intermediate-And long-lived states of the-A domain generates LFA-1/ICAM-1 catch bonds
    • Chen, W., Lou, J., & Zhu, C. Forcing switch from short-To intermediate-And long-lived states of the-A domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285, 35967-35978 (2010
    • (2010) J. Biol. Chem. , vol.285 , pp. 35967-35978
    • Chen, W.1    Lou, J.2    Zhu, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.