메뉴 건너뛰기




Volumn 47, Issue 10, 2017, Pages 2653-2662

Large-scale minimal complexity machines using explicit feature maps

Author keywords

Fastfood; minimal complexity machines (MCMs); random Fourier features; stochastic gradient descent; Vapnik Chervonenkis (VC) dimension

Indexed keywords

APPROXIMATION ALGORITHMS; STOCHASTIC SYSTEMS; SUPPORT VECTOR MACHINES;

EID: 85020478484     PISSN: 21682216     EISSN: 21682232     Source Type: Journal    
DOI: 10.1109/TSMC.2017.2694321     Document Type: Article
Times cited : (13)

References (63)
  • 1
    • 84922472059 scopus 로고    scopus 로고
    • Learning a hyperplane classifier by minimizing an exact bound on the VC dimension
    • Feb
    • Jayadeva, "Learning a hyperplane classifier by minimizing an exact bound on the VC dimension," Neurocomputing, vol. 149, pp. 683-689, Feb. 2015. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0925231214010194
    • (2015) Neurocomputing , vol.149 , pp. 683-689
    • Jayadeva1
  • 2
    • 84944515050 scopus 로고    scopus 로고
    • Learning a hyperplane regressor through a tight bound on the VC dimension
    • Jan
    • Jayadeva, S. Chandra, S. S. Batra, and S. Sabharwal, "Learning a hyperplane regressor through a tight bound on the VC dimension," Neurocomputing, vol. 171, pp. 1610-1616, Jan. 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S092523121500939X
    • (2016) Neurocomputing , vol.171 , pp. 1610-1616
    • Jayadeva1    Chandra, S.2    Batra, S.S.3    Sabharwal, S.4
  • 4
    • 85009888070 scopus 로고    scopus 로고
    • A cognitively motivated method for classification of occluded traffic signs
    • Feb
    • Y.-L. Hou, X. Hao, and H. Chen, "A cognitively motivated method for classification of occluded traffic signs," IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 2, pp. 255-262, Feb. 2017
    • (2017) IEEE Trans. Syst., Man, Cybern., Syst , vol.47 , Issue.2 , pp. 255-262
    • Hou, Y.-L.1    Hao, X.2    Chen, H.3
  • 5
    • 85029477051 scopus 로고    scopus 로고
    • Cascaded elastically progressive model for accurate face alignment
    • to be published
    • W. Yang, X. Sun, and Q. Liao, "Cascaded elastically progressive model for accurate face alignment," IEEE Trans. Syst., Man, Cybern., Syst., to be published, doi: 10.1109/TSMC.2016.2523930
    • IEEE Trans. Syst., Man, Cybern., Syst
    • Yang, W.1    Sun, X.2    Liao, Q.3
  • 7
    • 84904598315 scopus 로고    scopus 로고
    • A decision support approach for online stock forum sentiment analysis
    • Aug
    • D. D. Wu, L. Zheng, and D. L. Olson, "A decision support approach for online stock forum sentiment analysis," IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 8, pp. 1077-1087, Aug. 2014
    • (2014) IEEE Trans. Syst., Man, Cybern., Syst , vol.44 , Issue.8 , pp. 1077-1087
    • Wu, D.D.1    Zheng, L.2    Olson, D.L.3
  • 8
    • 84887050628 scopus 로고    scopus 로고
    • Realistic human action recognition with multimodal feature selection and fusion
    • Jul
    • Q. Wu, Z. Wang, F. Deng, Z. Chi, and D. D. Feng, "Realistic human action recognition with multimodal feature selection and fusion," IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 4, pp. 875-885, Jul. 2013
    • (2013) IEEE Trans. Syst., Man, Cybern., Syst , vol.43 , Issue.4 , pp. 875-885
    • Wu, Q.1    Wang, Z.2    Deng, F.3    Chi, Z.4    Feng, D.D.5
  • 9
    • 84887111053 scopus 로고    scopus 로고
    • Concept drift-oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction
    • Jul
    • J. Sun, H. Li, and H. Adeli, "Concept drift-oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction," IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 4, pp. 801-813, Jul. 2013
    • (2013) IEEE Trans. Syst., Man, Cybern., Syst , vol.43 , Issue.4 , pp. 801-813
    • Sun, J.1    Li, H.2    Adeli, H.3
  • 11
    • 77950308459 scopus 로고    scopus 로고
    • Recent advances and trends in large-scale kernel methods
    • H. Kashima, T. Idé, T, Kato, and M. Sugiyama, "Recent advances and trends in large-scale kernel methods," IEICE Trans. Inf. Syst., vol. 92-D, no. 7, pp. 1338-1353, 2009
    • (2009) IEICE Trans. Inf. Syst , vol.92-D , Issue.7 , pp. 1338-1353
    • Kashima, H.1    Idé, T.2    Kato, T.3    Sugiyama, M.4
  • 13
    • 0036161034 scopus 로고    scopus 로고
    • Training invariant support vector machines
    • D. Decoste and B. Schölkopf, "Training invariant support vector machines," Mach. Learn., vol. 46, no. 1, pp. 161-190, 2002. [Online]. Available: http://dx.doi.org/10.1023/A:1012454411458
    • (2002) Mach. Learn , vol.46 , Issue.1 , pp. 161-190
    • Decoste, D.1    Schölkopf, B.2
  • 14
    • 0002493574 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning
    • A. J. Smola and B. Schökopf, "Sparse greedy matrix approximation for machine learning," in Proc. ICML, 2000, pp. 911-918. [Online]. Available: http://dl.acm.org/citation.cfm?id=645529.657980
    • (2000) Proc. ICML , pp. 911-918
    • Smola, A.J.1    Schökopf, B.2
  • 15
    • 84899010839 scopus 로고    scopus 로고
    • Using the nyström method to speed up kernel machines
    • Denver, CO, USA
    • C. K. I. Williams and M. Seeger, "Using the nyström method to speed up kernel machines," in Proc. 13th Int. Conf. Neural Inf. Process. Syst. (NIPS), Denver, CO, USA, 2000, pp. 661-667. [Online]. Available: http://dl.acm.org/citation.cfm?id=3008751.3008847
    • (2000) Proc. 13th Int. Conf. Neural Inf. Process. Syst. (NIPS) , pp. 661-667
    • Williams, C.K.I.1    Seeger, M.2
  • 16
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Mar
    • S. Fine and K. Scheinberg, "Efficient SVM training using low-rank kernel representations," J. Mach. Learn. Res., vol. 2, pp. 243-264, Mar. 2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=944790.944812
    • (2002) J. Mach. Learn. Res , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 17
    • 84862278427 scopus 로고    scopus 로고
    • On the impact of kernel approximation on learning accuracy
    • Sardinia, Italy
    • C. Cortes, M. Mohri, and A. Talwalkar, "On the impact of kernel approximation on learning accuracy," in Proc. 13th Int. Conf. Artif. Intell. Stat., vol. 9. Sardinia, Italy, 2010, pp. 113-120. [Online]. Available: http://proceedings.mlr.press/v9/cortes10a.html
    • (2010) Proc. 13th Int. Conf. Artif. Intell. Stat , vol.9 , pp. 113-120
    • Cortes, C.1    Mohri, M.2    Talwalkar, A.3
  • 18
    • 0003798627 scopus 로고    scopus 로고
    • Cambridge, MA, USA: MIT Press
    • J. C. Platt, Advances in Kernel Methods. Cambridge, MA, USA: MIT Press, 1999, pp. 185-208. [Online]. Available: http://dl.acm.org/citation.cfm?id=299094.299105
    • (1999) Advances in Kernel Methods , pp. 185-208
    • Platt, J.C.1
  • 19
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO Algorithm for SVM classifier design
    • S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to Platt's SMO Algorithm for SVM classifier design," Neural Comput., vol. 13, no. 3, pp. 637-649, 2001
    • (2001) Neural Comput , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 20
    • 84893613151 scopus 로고    scopus 로고
    • Sample selection based on K-L divergence for effectively training SVM
    • Oct
    • J. Zhai, C. Li, and T. Li, "Sample selection based on K-L divergence for effectively training SVM," in Proc. IEEE Int. Conf. Syst. Man Cybern., Oct. 2013, pp. 4837-4842
    • (2013) Proc. IEEE Int. Conf. Syst. Man Cybern , pp. 4837-4842
    • Zhai, J.1    Li, C.2    Li, T.3
  • 21
    • 80955130702 scopus 로고    scopus 로고
    • Using sequential unconstrained minimization techniques to simplify SVM solvers
    • S. Joshi, Jayadeva, G. Ramakrishnan, and S. Chandra, "Using sequential unconstrained minimization techniques to simplify SVM solvers," Neurocomputing, vol. 77, no. 1, pp. 253-260, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231211004188
    • (2012) Neurocomputing , vol.77 , Issue.1 , pp. 253-260
    • Joshi, S.1    Jayadeva2    Ramakrishnan, G.3    Chandra, S.4
  • 22
    • 0003798627 scopus 로고    scopus 로고
    • Cambridge, MA, USA: MIT Press
    • T. Joachims, Advances in Kernel Methods. Cambridge, MA, USA: MIT Press, 1999. [Online]. Available: http://dl.acm.org/citation.cfm?id=299094.299104
    • (1999) Advances in Kernel Methods
    • Joachims, T.1
  • 23
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large data sets
    • Dec
    • I. W. Tsang, J. T. Kwok, and P.-M. Cheung, "Core vector machines: Fast SVM training on very large data sets," J. Mach. Learn. Res., vol. 6, pp. 363-392, Dec. 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=1046920.1058114
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.-M.3
  • 24
    • 34547989245 scopus 로고    scopus 로고
    • Simpler core vector machines with enclosing balls
    • Corvallis, OR, USA
    • I. W. Tsang, A. Kocsor, and J. T. Kwok, "Simpler core vector machines with enclosing balls," in Proc. 24th Int. Conf. Mach. Learn. (ICML), Corvallis, OR, USA, 2007, pp. 911-918. [Online]. Available: http://doi.acm.org/10.1145/1273496.1273611
    • (2007) Proc. 24th Int. Conf. Mach. Learn. (ICML) , pp. 911-918
    • Tsang, I.W.1    Kocsor, A.2    Kwok, J.T.3
  • 25
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers with online and active learning
    • Dec
    • A. Bordes, S. Ertekin, J. Weston, and L. Bottou, "Fast kernel classifiers with online and active learning," J. Mach. Learn. Res., vol. 6, pp. 1579-1619, Dec. 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=1046920.1194898
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1579-1619
    • Bordes, A.1    Ertekin, S.2    Weston, J.3    Bottou, L.4
  • 26
    • 53749089739 scopus 로고    scopus 로고
    • Fast support vector machine training and classification on graphics processors
    • Helsinki, Finland
    • B. Catanzaro, N. Sundaram, and K. Keutzer, "Fast support vector machine training and classification on graphics processors," in Proc. 25th Int. Conf. Mach. Learn. (ICML), Helsinki, Finland, 2008, pp. 104-111. [Online]. Available: http://doi.acm.org/10.1145/ 1390156.1390170
    • (2008) Proc. 25th Int. Conf. Mach. Learn. (ICML) , pp. 104-111
    • Catanzaro, B.1    Sundaram, N.2    Keutzer, K.3
  • 27
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Apr
    • C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, Apr. 2011. [Online]. Available: http://doi.acm.org/10.1145/ 1961189.1961199
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 28
    • 33746869623 scopus 로고    scopus 로고
    • Parallel sequential minimal optimization for the training of support vector machines
    • Jul
    • L. J. Cao et al., "Parallel sequential minimal optimization for the training of support vector machines," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 1039-1049, Jul. 2006. [Online]. Available: http://dx.doi.org/10.1109/TNN.2006.875989
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 1039-1049
    • Cao, L.J.1
  • 29
    • 0003238552 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Proc. NIPS, 2000, pp. 388-394. [Online]. Available: http://dl.acm.org/citation.cfm?id=3008751.3008808
    • (2000) Proc. NIPS , pp. 388-394
    • Cauwenberghs, G.1    Poggio, T.2
  • 30
    • 42249094907 scopus 로고    scopus 로고
    • Support vector machine solvers
    • Cambridge, MA, USA: MIT Press
    • L. Bottou and C.-J. Lin, "Support vector machine solvers," in Large Scale Kernel Machines. Cambridge, MA, USA: MIT Press, 2007, pp. 301-320
    • (2007) Large Scale Kernel Machines , pp. 301-320
    • Bottou, L.1    Lin, C.-J.2
  • 31
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • May
    • O. Chapelle, "Training a support vector machine in the primal," Neural Comput., vol. 19, no. 5, pp. 1155-1178, May 2007. [Online]. Available: http://dx.doi.org/10.1162/neco.2007.19.5.1155
    • (2007) Neural Comput , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 32
    • 84911369278 scopus 로고    scopus 로고
    • Hash-SVM: Scalable kernel machines for large-scale visual classification
    • Columbus, OH, USA, Jun
    • Y. Mu, G. Hua, W. Fan, and S.-F. Chang, "Hash-SVM: Scalable kernel machines for large-scale visual classification," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014, pp. 979-986
    • (2014) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , pp. 979-986
    • Mu, Y.1    Hua, G.2    Fan, W.3    Chang, S.-F.4
  • 33
    • 84906948723 scopus 로고    scopus 로고
    • An insight into extreme learning machines: Random neurons, random features and kernels
    • G.-B. Huang, "An insight into extreme learning machines: Random neurons, random features and kernels," Cogn. Comput., vol. 6, no. 3, pp. 376-390, 2014. [Online]. Available: http://dx.doi.org/10.1007/ s12559-014-9255-2
    • (2014) Cogn. Comput , vol.6 , Issue.3 , pp. 376-390
    • Huang, G.-B.1
  • 34
    • 84940094107 scopus 로고    scopus 로고
    • Random Fourier extreme learning machine with l2,1-norm regularization
    • Jan
    • S. Zhou et al., "Random Fourier extreme learning machine with l2,1-norm regularization," Neurocomputing, vol. 174, pp. 143-153, Jan. 2016. [Online]. Available: http://dx.doi.org/10.1016/ j.neucom.2015.03.113
    • (2016) Neurocomputing , vol.174 , pp. 143-153
    • Zhou, S.1
  • 35
    • 84937824211 scopus 로고    scopus 로고
    • Fast prediction for large-scale kernel machines
    • Montreal, QC, Canada
    • C.-J. Hsieh, S. Si, and I. S. Dhillon, "Fast prediction for large-scale kernel machines," in Proc. 27th Int. Conf. Neural Inf. Process. Syst. (NIPS), Montreal, QC, Canada, 2014, pp. 3689-3697. [Online]. Available: http://dl.acm.org/citation.cfm?id= 2969033.2969238
    • (2014) Proc. 27th Int. Conf. Neural Inf. Process. Syst. (NIPS) , pp. 3689-3697
    • Hsieh, C.-J.1    Si, S.2    Dhillon, I.S.3
  • 36
    • 84907425976 scopus 로고    scopus 로고
    • Quantum support vector machine for big data classification
    • Sep
    • P. Rebentrost, M. Mohseni, and S. Lloyd, "Quantum support vector machine for big data classification," Phys. Rev. Lett., vol. 113, no. 13, Sep. 2014, Art. no. 130503. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
    • (2014) Phys. Rev. Lett , vol.113 , Issue.13
    • Rebentrost, P.1    Mohseni, M.2    Lloyd, S.3
  • 38
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • Corvallis, OR, USA
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro, "Pegasos: Primal estimated sub-gradient solver for SVM," in Proc. ICML, Corvallis, OR, USA, 2007, pp. 807-814. [Online]. Available: http://doi.acm.org/10.1145/1273496.1273598
    • (2007) Proc. ICML , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 39
    • 33749563073 scopus 로고    scopus 로고
    • Training linear SVMs in linear time
    • Philadelphia, PA, USA
    • T. Joachims, "Training linear SVMs in linear time," in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD), Philadelphia, PA, USA, 2006, pp. 217-226. [Online]. Available: http://doi.acm.org/10.1145/1150402.1150429
    • (2006) Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD) , pp. 217-226
    • Joachims, T.1
  • 41
    • 48849104146 scopus 로고    scopus 로고
    • Coordinate descent method for large-scale l2-loss linear support vector machines
    • Jun
    • K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, "Coordinate descent method for large-scale l2-loss linear support vector machines," J. Mach. Learn. Res., vol. 9, pp. 1369-1398, Jun. 2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=1390681.1442778
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 1369-1398
    • Chang, K.-W.1    Hsieh, C.-J.2    Lin, C.-J.3
  • 42
    • 50949133669 scopus 로고    scopus 로고
    • Liblinear: A library for large linear classification
    • Jun
    • R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, "Liblinear: A library for large linear classification," J. Mach. Learn. Res., vol. 9, pp. 1871-1874, Jun. 2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=1390681.1442794
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 43
    • 84938063912 scopus 로고    scopus 로고
    • SVM optimization algorithm based on dynamic clustering and ensemble learning for large scale dataset
    • San Diego, CA, USA
    • S. Shu, L. Ren, Y. Ding, K. Hao, and R. Jiang, "SVM optimization algorithm based on dynamic clustering and ensemble learning for large scale dataset," in Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC), San Diego, CA, USA, 2014, pp. 2278-2283
    • (2014) Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC) , pp. 2278-2283
    • Shu, S.1    Ren, L.2    Ding, Y.3    Hao, K.4    Jiang, R.5
  • 44
    • 84919800930 scopus 로고    scopus 로고
    • A divide-and-conquer solver for kernel support vector machines
    • Beijing, China
    • C.-J. Hsieh, S. Si, and I. S. Dhillon, "A divide-and-conquer solver for kernel support vector machines," in Proc. ICML, Beijing, China, 2014, pp. 566-574
    • (2014) Proc. ICML , pp. 566-574
    • Hsieh, C.-J.1    Si, S.2    Dhillon, I.S.3
  • 45
    • 84964546789 scopus 로고    scopus 로고
    • Accelerating support vector machine learning with GPU-based mapreduce
    • Hong Kong, Oct
    • T. Sun, H. Wang, Y. Shen, and J. Wu, "Accelerating support vector machine learning with GPU-based mapreduce," in Proc. IEEE Int. Conf. Syst. Man Cybern., Hong Kong, Oct. 2015, pp. 876-881
    • (2015) Proc. IEEE Int. Conf. Syst. Man Cybern , pp. 876-881
    • Sun, T.1    Wang, H.2    Shen, Y.3    Wu, J.4
  • 46
    • 85021639033 scopus 로고    scopus 로고
    • Structured output-associated dictionary learning for haptic understanding
    • to be published
    • H. Liu, F. Sun, D. Guo, B. Fang, and Z. Peng, "Structured output-associated dictionary learning for haptic understanding," IEEE Trans. Syst., Man, Cybern., Syst., to be published, doi: 10.1109/TSMC.2016.2635141
    • IEEE Trans. Syst., Man, Cybern., Syst
    • Liu, H.1    Sun, F.2    Guo, D.3    Fang, B.4    Peng, Z.5
  • 47
    • 84992093286 scopus 로고    scopus 로고
    • Extreme kernel sparse learning for tactile object recognition
    • to be published
    • H. Liu, J. Qin, F. Sun, and D. Guo, "Extreme kernel sparse learning for tactile object recognition," IEEE Trans. Cybern., to be published, doi: 10.1109/TCYB.2016.2614809
    • IEEE Trans. Cybern
    • Liu, H.1    Qin, J.2    Sun, F.3    Guo, D.4
  • 48
    • 77953218689 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • Vancouver, BC, Canada
    • A. Rahimi and B. Recht, "Random features for large-scale kernel machines," in Proc. 20th Int. Conf. Neural Inf. Process. Syst. (NIPS), Vancouver, BC, Canada, 2007, pp. 1177-1184. [Online]. Available: http://dl.acm.org/citation.cfm?id=2981562.2981710
    • (2007) Proc. 20th Int. Conf. Neural Inf. Process. Syst. (NIPS) , pp. 1177-1184
    • Rahimi, A.1    Recht, B.2
  • 49
    • 84898989411 scopus 로고    scopus 로고
    • Fastfood-Computing Hilbert space expansions in loglinear time
    • Jun
    • Q. Le, T. Sarlos, and A. Smola, "Fastfood-Computing Hilbert space expansions in loglinear time," in Proc. 30th Int. Conf. Mach. Learn., vol. 28. Jun. 2013, pp. 244-252. [Online]. Available: http://proceedings.mlr.press/v28/le13.html
    • (2013) Proc. 30th Int. Conf. Mach. Learn , vol.28 , pp. 244-252
    • Le, Q.1    Sarlos, T.2    Smola, A.3
  • 50
    • 84937855981 scopus 로고    scopus 로고
    • Scalable kernel methods via doubly stochastic gradients
    • B. Dai et al., "Scalable kernel methods via doubly stochastic gradients," in Proc. 27th Int. Conf. Neural Inf. Process. Syst. (NIPS), 2014, pp. 3041-3049. [Online]. Available: http://dl.acm.org/ citation.cfm?id=2969033.2969166
    • (2014) Proc. 27th Int. Conf. Neural Inf. Process. Syst. (NIPS) , pp. 3041-3049
    • Dai, B.1
  • 51
    • 0003991806 scopus 로고    scopus 로고
    • 1st ed. New York, NY, USA: Wiley, Sep
    • V. N. Vapnik, Statistical Learning Theory, 1st ed. New York, NY, USA: Wiley, Sep. 1998. [Online]. Available: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471030031
    • (1998) Statistical Learning Theory
    • Vapnik, V.N.1
  • 52
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. Burges, "A tutorial on support vector machines for pattern recognition," Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121-167, 1998. [Online]. Available: http://dx.doi.org/10.1023/A:1009715923555
    • (1998) Data Min. Knowl. Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 54
    • 84877726257 scopus 로고    scopus 로고
    • The representer theorem for Hilbert spaces: A necessary and sufficient condition
    • F. Dinuzzo and B. Schölkopf, "The representer theorem for Hilbert spaces: A necessary and sufficient condition," in Proc. 25th Int. Conf. Neural Inf. Process. Syst. (NIPS), 2012, pp. 189-196. [Online]. Available: http://dl.acm.org/citation.cfm?id=2999134.2999156
    • (2012) Proc. 25th Int. Conf. Neural Inf. Process. Syst. (NIPS) , pp. 189-196
    • Dinuzzo, F.1    Schölkopf, B.2
  • 55
    • 85030110132 scopus 로고
    • Fourier analysis on groups
    • R. E. Edwards, "Fourier analysis on groups," J. London Math. Soc., vol. 1-39, pp. 187-188, 1964, doi: 10.1112/jlms/s1-39.1.187
    • (1964) J. London Math. Soc , vol.1 , Issue.39 , pp. 187-188
    • Edwards, R.E.1
  • 57
    • 84982319043 scopus 로고    scopus 로고
    • On the error of random Fourier features
    • D. J. Sutherland and J. Schneider, "On the error of random Fourier features," in Proc. UAI, 2015, pp. 862-871. [Online]. Available: http://dl.acm.org/citation.cfm?id=3020847.3020936
    • (2015) Proc. UAI , pp. 862-871
    • Sutherland, D.J.1    Schneider, J.2
  • 58
    • 84877740547 scopus 로고    scopus 로고
    • Nyström method vs random Fourier features: A theoretical and empirical comparison
    • T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou, "Nyström method vs random Fourier features: A theoretical and empirical comparison," in Proc. 25th Int. Conf. Neural Inf. Process. Syst. (NIPS), 2012, pp. 476-484. [Online]. Available: http://dl.acm.org/citation.cfm?id=2999134.2999188
    • (2012) Proc. 25th Int. Conf. Neural Inf. Process. Syst. (NIPS) , pp. 476-484
    • Yang, T.1    Li, Y.-F.2    Mahdavi, M.3    Jin, R.4    Zhou, Z.-H.5
  • 59
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in python
    • Nov
    • F. Pedregosa et al., "Scikit-learn: Machine learning in python," J. Mach. Learn. Res., vol. 12, pp. 2825-2830, Nov. 2011. [Online]. Available: http://dl.acm.org/citation.cfm?id=1953048.2078195
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 61
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Mar
    • K. Crammer and Y. Singer, "On the algorithmic implementation of multiclass kernel-based vector machines," J. Mach. Learn. Res., vol. 2, pp. 265-292, Mar. 2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=944790.944813
    • (2002) J. Mach. Learn. Res , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 62
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • H. B. Mann and D. R. Whitney, "On a test of whether one of two random variables is stochastically larger than the other," Ann. Math. Stat., vol. 18, no. 1, pp. 50-60, 1947
    • (1947) Ann. Math. Stat , vol.18 , Issue.1 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 63
    • 77956815759 scopus 로고    scopus 로고
    • Wilcoxon-mann-whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules
    • M. P. Fay and M. A. Proschan, "Wilcoxon-mann-whitney or t-test? on assumptions for hypothesis tests and multiple interpretations of decision rules," Stat. Surv., vol. 4, pp. 1-39, 2010. [Online]. Available: http://projecteuclid.org/all/euclid.ssu
    • (2010) Stat. Surv , vol.4 , pp. 1-39
    • Fay, M.P.1    Proschan, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.