-
1
-
-
84922472059
-
Learning a hyperplane classifier by minimizing an exact bound on the VC dimension
-
Feb
-
Jayadeva, "Learning a hyperplane classifier by minimizing an exact bound on the VC dimension," Neurocomputing, vol. 149, pp. 683-689, Feb. 2015. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0925231214010194
-
(2015)
Neurocomputing
, vol.149
, pp. 683-689
-
-
Jayadeva1
-
2
-
-
84944515050
-
Learning a hyperplane regressor through a tight bound on the VC dimension
-
Jan
-
Jayadeva, S. Chandra, S. S. Batra, and S. Sabharwal, "Learning a hyperplane regressor through a tight bound on the VC dimension," Neurocomputing, vol. 171, pp. 1610-1616, Jan. 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S092523121500939X
-
(2016)
Neurocomputing
, vol.171
, pp. 1610-1616
-
-
Jayadeva1
Chandra, S.2
Batra, S.S.3
Sabharwal, S.4
-
4
-
-
85009888070
-
A cognitively motivated method for classification of occluded traffic signs
-
Feb
-
Y.-L. Hou, X. Hao, and H. Chen, "A cognitively motivated method for classification of occluded traffic signs," IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 2, pp. 255-262, Feb. 2017
-
(2017)
IEEE Trans. Syst., Man, Cybern., Syst
, vol.47
, Issue.2
, pp. 255-262
-
-
Hou, Y.-L.1
Hao, X.2
Chen, H.3
-
5
-
-
85029477051
-
Cascaded elastically progressive model for accurate face alignment
-
to be published
-
W. Yang, X. Sun, and Q. Liao, "Cascaded elastically progressive model for accurate face alignment," IEEE Trans. Syst., Man, Cybern., Syst., to be published, doi: 10.1109/TSMC.2016.2523930
-
IEEE Trans. Syst., Man, Cybern., Syst
-
-
Yang, W.1
Sun, X.2
Liao, Q.3
-
7
-
-
84904598315
-
A decision support approach for online stock forum sentiment analysis
-
Aug
-
D. D. Wu, L. Zheng, and D. L. Olson, "A decision support approach for online stock forum sentiment analysis," IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 8, pp. 1077-1087, Aug. 2014
-
(2014)
IEEE Trans. Syst., Man, Cybern., Syst
, vol.44
, Issue.8
, pp. 1077-1087
-
-
Wu, D.D.1
Zheng, L.2
Olson, D.L.3
-
8
-
-
84887050628
-
Realistic human action recognition with multimodal feature selection and fusion
-
Jul
-
Q. Wu, Z. Wang, F. Deng, Z. Chi, and D. D. Feng, "Realistic human action recognition with multimodal feature selection and fusion," IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 4, pp. 875-885, Jul. 2013
-
(2013)
IEEE Trans. Syst., Man, Cybern., Syst
, vol.43
, Issue.4
, pp. 875-885
-
-
Wu, Q.1
Wang, Z.2
Deng, F.3
Chi, Z.4
Feng, D.D.5
-
9
-
-
84887111053
-
Concept drift-oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction
-
Jul
-
J. Sun, H. Li, and H. Adeli, "Concept drift-oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction," IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 4, pp. 801-813, Jul. 2013
-
(2013)
IEEE Trans. Syst., Man, Cybern., Syst
, vol.43
, Issue.4
, pp. 801-813
-
-
Sun, J.1
Li, H.2
Adeli, H.3
-
10
-
-
84887041108
-
Palm-print classification by global features
-
Mar
-
B. Zhang, W. Li, P. Qing, and D. Zhang, "Palm-print classification by global features," IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 2, pp. 370-378, Mar. 2013
-
(2013)
IEEE Trans. Syst., Man, Cybern., Syst
, vol.43
, Issue.2
, pp. 370-378
-
-
Zhang, B.1
Li, W.2
Qing, P.3
Zhang, D.4
-
11
-
-
77950308459
-
Recent advances and trends in large-scale kernel methods
-
H. Kashima, T. Idé, T, Kato, and M. Sugiyama, "Recent advances and trends in large-scale kernel methods," IEICE Trans. Inf. Syst., vol. 92-D, no. 7, pp. 1338-1353, 2009
-
(2009)
IEICE Trans. Inf. Syst
, vol.92-D
, Issue.7
, pp. 1338-1353
-
-
Kashima, H.1
Idé, T.2
Kato, T.3
Sugiyama, M.4
-
12
-
-
38849166405
-
-
Cambridge, MA, USA: MIT Press
-
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Large-Scale Kernel Machines (Neural Information Processing). Cambridge, MA, USA: MIT Press, 2007
-
(2007)
Large-Scale Kernel Machines (Neural Information Processing)
-
-
Bottou, L.1
Chapelle, O.2
DeCoste, D.3
Weston, J.4
-
13
-
-
0036161034
-
Training invariant support vector machines
-
D. Decoste and B. Schölkopf, "Training invariant support vector machines," Mach. Learn., vol. 46, no. 1, pp. 161-190, 2002. [Online]. Available: http://dx.doi.org/10.1023/A:1012454411458
-
(2002)
Mach. Learn
, vol.46
, Issue.1
, pp. 161-190
-
-
Decoste, D.1
Schölkopf, B.2
-
14
-
-
0002493574
-
Sparse greedy matrix approximation for machine learning
-
A. J. Smola and B. Schökopf, "Sparse greedy matrix approximation for machine learning," in Proc. ICML, 2000, pp. 911-918. [Online]. Available: http://dl.acm.org/citation.cfm?id=645529.657980
-
(2000)
Proc. ICML
, pp. 911-918
-
-
Smola, A.J.1
Schökopf, B.2
-
15
-
-
84899010839
-
Using the nyström method to speed up kernel machines
-
Denver, CO, USA
-
C. K. I. Williams and M. Seeger, "Using the nyström method to speed up kernel machines," in Proc. 13th Int. Conf. Neural Inf. Process. Syst. (NIPS), Denver, CO, USA, 2000, pp. 661-667. [Online]. Available: http://dl.acm.org/citation.cfm?id=3008751.3008847
-
(2000)
Proc. 13th Int. Conf. Neural Inf. Process. Syst. (NIPS)
, pp. 661-667
-
-
Williams, C.K.I.1
Seeger, M.2
-
16
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
Mar
-
S. Fine and K. Scheinberg, "Efficient SVM training using low-rank kernel representations," J. Mach. Learn. Res., vol. 2, pp. 243-264, Mar. 2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=944790.944812
-
(2002)
J. Mach. Learn. Res
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
17
-
-
84862278427
-
On the impact of kernel approximation on learning accuracy
-
Sardinia, Italy
-
C. Cortes, M. Mohri, and A. Talwalkar, "On the impact of kernel approximation on learning accuracy," in Proc. 13th Int. Conf. Artif. Intell. Stat., vol. 9. Sardinia, Italy, 2010, pp. 113-120. [Online]. Available: http://proceedings.mlr.press/v9/cortes10a.html
-
(2010)
Proc. 13th Int. Conf. Artif. Intell. Stat
, vol.9
, pp. 113-120
-
-
Cortes, C.1
Mohri, M.2
Talwalkar, A.3
-
18
-
-
0003798627
-
-
Cambridge, MA, USA: MIT Press
-
J. C. Platt, Advances in Kernel Methods. Cambridge, MA, USA: MIT Press, 1999, pp. 185-208. [Online]. Available: http://dl.acm.org/citation.cfm?id=299094.299105
-
(1999)
Advances in Kernel Methods
, pp. 185-208
-
-
Platt, J.C.1
-
19
-
-
0000545946
-
Improvements to Platt's SMO Algorithm for SVM classifier design
-
S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to Platt's SMO Algorithm for SVM classifier design," Neural Comput., vol. 13, no. 3, pp. 637-649, 2001
-
(2001)
Neural Comput
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
20
-
-
84893613151
-
Sample selection based on K-L divergence for effectively training SVM
-
Oct
-
J. Zhai, C. Li, and T. Li, "Sample selection based on K-L divergence for effectively training SVM," in Proc. IEEE Int. Conf. Syst. Man Cybern., Oct. 2013, pp. 4837-4842
-
(2013)
Proc. IEEE Int. Conf. Syst. Man Cybern
, pp. 4837-4842
-
-
Zhai, J.1
Li, C.2
Li, T.3
-
21
-
-
80955130702
-
Using sequential unconstrained minimization techniques to simplify SVM solvers
-
S. Joshi, Jayadeva, G. Ramakrishnan, and S. Chandra, "Using sequential unconstrained minimization techniques to simplify SVM solvers," Neurocomputing, vol. 77, no. 1, pp. 253-260, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231211004188
-
(2012)
Neurocomputing
, vol.77
, Issue.1
, pp. 253-260
-
-
Joshi, S.1
Jayadeva2
Ramakrishnan, G.3
Chandra, S.4
-
22
-
-
0003798627
-
-
Cambridge, MA, USA: MIT Press
-
T. Joachims, Advances in Kernel Methods. Cambridge, MA, USA: MIT Press, 1999. [Online]. Available: http://dl.acm.org/citation.cfm?id=299094.299104
-
(1999)
Advances in Kernel Methods
-
-
Joachims, T.1
-
23
-
-
21844440579
-
Core vector machines: Fast SVM training on very large data sets
-
Dec
-
I. W. Tsang, J. T. Kwok, and P.-M. Cheung, "Core vector machines: Fast SVM training on very large data sets," J. Mach. Learn. Res., vol. 6, pp. 363-392, Dec. 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=1046920.1058114
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 363-392
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.-M.3
-
24
-
-
34547989245
-
Simpler core vector machines with enclosing balls
-
Corvallis, OR, USA
-
I. W. Tsang, A. Kocsor, and J. T. Kwok, "Simpler core vector machines with enclosing balls," in Proc. 24th Int. Conf. Mach. Learn. (ICML), Corvallis, OR, USA, 2007, pp. 911-918. [Online]. Available: http://doi.acm.org/10.1145/1273496.1273611
-
(2007)
Proc. 24th Int. Conf. Mach. Learn. (ICML)
, pp. 911-918
-
-
Tsang, I.W.1
Kocsor, A.2
Kwok, J.T.3
-
25
-
-
25444522689
-
Fast kernel classifiers with online and active learning
-
Dec
-
A. Bordes, S. Ertekin, J. Weston, and L. Bottou, "Fast kernel classifiers with online and active learning," J. Mach. Learn. Res., vol. 6, pp. 1579-1619, Dec. 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=1046920.1194898
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 1579-1619
-
-
Bordes, A.1
Ertekin, S.2
Weston, J.3
Bottou, L.4
-
26
-
-
53749089739
-
Fast support vector machine training and classification on graphics processors
-
Helsinki, Finland
-
B. Catanzaro, N. Sundaram, and K. Keutzer, "Fast support vector machine training and classification on graphics processors," in Proc. 25th Int. Conf. Mach. Learn. (ICML), Helsinki, Finland, 2008, pp. 104-111. [Online]. Available: http://doi.acm.org/10.1145/ 1390156.1390170
-
(2008)
Proc. 25th Int. Conf. Mach. Learn. (ICML)
, pp. 104-111
-
-
Catanzaro, B.1
Sundaram, N.2
Keutzer, K.3
-
27
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
Apr
-
C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, Apr. 2011. [Online]. Available: http://doi.acm.org/10.1145/ 1961189.1961199
-
(2011)
ACM Trans. Intell. Syst. Technol
, vol.2
, Issue.3
, pp. 1-27
-
-
Chang, C.-C.1
Lin, C.-J.2
-
28
-
-
33746869623
-
Parallel sequential minimal optimization for the training of support vector machines
-
Jul
-
L. J. Cao et al., "Parallel sequential minimal optimization for the training of support vector machines," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 1039-1049, Jul. 2006. [Online]. Available: http://dx.doi.org/10.1109/TNN.2006.875989
-
(2006)
IEEE Trans. Neural Netw
, vol.17
, Issue.4
, pp. 1039-1049
-
-
Cao, L.J.1
-
29
-
-
0003238552
-
Incremental and decremental support vector machine learning
-
G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Proc. NIPS, 2000, pp. 388-394. [Online]. Available: http://dl.acm.org/citation.cfm?id=3008751.3008808
-
(2000)
Proc. NIPS
, pp. 388-394
-
-
Cauwenberghs, G.1
Poggio, T.2
-
30
-
-
42249094907
-
Support vector machine solvers
-
Cambridge, MA, USA: MIT Press
-
L. Bottou and C.-J. Lin, "Support vector machine solvers," in Large Scale Kernel Machines. Cambridge, MA, USA: MIT Press, 2007, pp. 301-320
-
(2007)
Large Scale Kernel Machines
, pp. 301-320
-
-
Bottou, L.1
Lin, C.-J.2
-
31
-
-
34247849152
-
Training a support vector machine in the primal
-
May
-
O. Chapelle, "Training a support vector machine in the primal," Neural Comput., vol. 19, no. 5, pp. 1155-1178, May 2007. [Online]. Available: http://dx.doi.org/10.1162/neco.2007.19.5.1155
-
(2007)
Neural Comput
, vol.19
, Issue.5
, pp. 1155-1178
-
-
Chapelle, O.1
-
32
-
-
84911369278
-
Hash-SVM: Scalable kernel machines for large-scale visual classification
-
Columbus, OH, USA, Jun
-
Y. Mu, G. Hua, W. Fan, and S.-F. Chang, "Hash-SVM: Scalable kernel machines for large-scale visual classification," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014, pp. 979-986
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 979-986
-
-
Mu, Y.1
Hua, G.2
Fan, W.3
Chang, S.-F.4
-
33
-
-
84906948723
-
An insight into extreme learning machines: Random neurons, random features and kernels
-
G.-B. Huang, "An insight into extreme learning machines: Random neurons, random features and kernels," Cogn. Comput., vol. 6, no. 3, pp. 376-390, 2014. [Online]. Available: http://dx.doi.org/10.1007/ s12559-014-9255-2
-
(2014)
Cogn. Comput
, vol.6
, Issue.3
, pp. 376-390
-
-
Huang, G.-B.1
-
34
-
-
84940094107
-
Random Fourier extreme learning machine with l2,1-norm regularization
-
Jan
-
S. Zhou et al., "Random Fourier extreme learning machine with l2,1-norm regularization," Neurocomputing, vol. 174, pp. 143-153, Jan. 2016. [Online]. Available: http://dx.doi.org/10.1016/ j.neucom.2015.03.113
-
(2016)
Neurocomputing
, vol.174
, pp. 143-153
-
-
Zhou, S.1
-
35
-
-
84937824211
-
Fast prediction for large-scale kernel machines
-
Montreal, QC, Canada
-
C.-J. Hsieh, S. Si, and I. S. Dhillon, "Fast prediction for large-scale kernel machines," in Proc. 27th Int. Conf. Neural Inf. Process. Syst. (NIPS), Montreal, QC, Canada, 2014, pp. 3689-3697. [Online]. Available: http://dl.acm.org/citation.cfm?id= 2969033.2969238
-
(2014)
Proc. 27th Int. Conf. Neural Inf. Process. Syst. (NIPS)
, pp. 3689-3697
-
-
Hsieh, C.-J.1
Si, S.2
Dhillon, I.S.3
-
36
-
-
84907425976
-
Quantum support vector machine for big data classification
-
Sep
-
P. Rebentrost, M. Mohseni, and S. Lloyd, "Quantum support vector machine for big data classification," Phys. Rev. Lett., vol. 113, no. 13, Sep. 2014, Art. no. 130503. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
-
(2014)
Phys. Rev. Lett
, vol.113
, Issue.13
-
-
Rebentrost, P.1
Mohseni, M.2
Lloyd, S.3
-
37
-
-
56449086680
-
A dual coordinate descent method for largescale linear SVM
-
Helsinki, Finland
-
C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan, "A dual coordinate descent method for largescale linear svm," in Proc. 25th Int. Conf. Mach. Learn. (ICML), Helsinki, Finland, 2008, pp. 408-415. [Online]. Available: http://doi.acm.org/10.1145/1390156.1390208
-
(2008)
Proc. 25th Int. Conf. Mach. Learn. (ICML)
, pp. 408-415
-
-
Hsieh, C.-J.1
Chang, K.-W.2
Lin, C.-J.3
Keerthi, S.S.4
Sundararajan, S.5
-
38
-
-
34547964973
-
Pegasos: Primal estimated sub-gradient solver for SVM
-
Corvallis, OR, USA
-
S. Shalev-Shwartz, Y. Singer, and N. Srebro, "Pegasos: Primal estimated sub-gradient solver for SVM," in Proc. ICML, Corvallis, OR, USA, 2007, pp. 807-814. [Online]. Available: http://doi.acm.org/10.1145/1273496.1273598
-
(2007)
Proc. ICML
, pp. 807-814
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
-
39
-
-
33749563073
-
Training linear SVMs in linear time
-
Philadelphia, PA, USA
-
T. Joachims, "Training linear SVMs in linear time," in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD), Philadelphia, PA, USA, 2006, pp. 217-226. [Online]. Available: http://doi.acm.org/10.1145/1150402.1150429
-
(2006)
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD)
, pp. 217-226
-
-
Joachims, T.1
-
40
-
-
33750373672
-
Large scale semi-supervised linear SVMs
-
Seattle, WA, USA
-
V. Sindhwani and S. S. Keerthi, "Large scale semi-supervised linear SVMs," in Proc. 29th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval (SIGIR), Seattle, WA, USA, 2006, pp. 477-484. [Online]. Available: http://doi.acm.org/10.1145/1148170.1148253
-
(2006)
Proc. 29th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval (SIGIR)
, pp. 477-484
-
-
Sindhwani, V.1
Keerthi, S.S.2
-
41
-
-
48849104146
-
Coordinate descent method for large-scale l2-loss linear support vector machines
-
Jun
-
K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, "Coordinate descent method for large-scale l2-loss linear support vector machines," J. Mach. Learn. Res., vol. 9, pp. 1369-1398, Jun. 2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=1390681.1442778
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 1369-1398
-
-
Chang, K.-W.1
Hsieh, C.-J.2
Lin, C.-J.3
-
42
-
-
50949133669
-
Liblinear: A library for large linear classification
-
Jun
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, "Liblinear: A library for large linear classification," J. Mach. Learn. Res., vol. 9, pp. 1871-1874, Jun. 2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=1390681.1442794
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
43
-
-
84938063912
-
SVM optimization algorithm based on dynamic clustering and ensemble learning for large scale dataset
-
San Diego, CA, USA
-
S. Shu, L. Ren, Y. Ding, K. Hao, and R. Jiang, "SVM optimization algorithm based on dynamic clustering and ensemble learning for large scale dataset," in Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC), San Diego, CA, USA, 2014, pp. 2278-2283
-
(2014)
Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC)
, pp. 2278-2283
-
-
Shu, S.1
Ren, L.2
Ding, Y.3
Hao, K.4
Jiang, R.5
-
44
-
-
84919800930
-
A divide-and-conquer solver for kernel support vector machines
-
Beijing, China
-
C.-J. Hsieh, S. Si, and I. S. Dhillon, "A divide-and-conquer solver for kernel support vector machines," in Proc. ICML, Beijing, China, 2014, pp. 566-574
-
(2014)
Proc. ICML
, pp. 566-574
-
-
Hsieh, C.-J.1
Si, S.2
Dhillon, I.S.3
-
45
-
-
84964546789
-
Accelerating support vector machine learning with GPU-based mapreduce
-
Hong Kong, Oct
-
T. Sun, H. Wang, Y. Shen, and J. Wu, "Accelerating support vector machine learning with GPU-based mapreduce," in Proc. IEEE Int. Conf. Syst. Man Cybern., Hong Kong, Oct. 2015, pp. 876-881
-
(2015)
Proc. IEEE Int. Conf. Syst. Man Cybern
, pp. 876-881
-
-
Sun, T.1
Wang, H.2
Shen, Y.3
Wu, J.4
-
46
-
-
85021639033
-
Structured output-associated dictionary learning for haptic understanding
-
to be published
-
H. Liu, F. Sun, D. Guo, B. Fang, and Z. Peng, "Structured output-associated dictionary learning for haptic understanding," IEEE Trans. Syst., Man, Cybern., Syst., to be published, doi: 10.1109/TSMC.2016.2635141
-
IEEE Trans. Syst., Man, Cybern., Syst
-
-
Liu, H.1
Sun, F.2
Guo, D.3
Fang, B.4
Peng, Z.5
-
47
-
-
84992093286
-
Extreme kernel sparse learning for tactile object recognition
-
to be published
-
H. Liu, J. Qin, F. Sun, and D. Guo, "Extreme kernel sparse learning for tactile object recognition," IEEE Trans. Cybern., to be published, doi: 10.1109/TCYB.2016.2614809
-
IEEE Trans. Cybern
-
-
Liu, H.1
Qin, J.2
Sun, F.3
Guo, D.4
-
48
-
-
77953218689
-
Random features for large-scale kernel machines
-
Vancouver, BC, Canada
-
A. Rahimi and B. Recht, "Random features for large-scale kernel machines," in Proc. 20th Int. Conf. Neural Inf. Process. Syst. (NIPS), Vancouver, BC, Canada, 2007, pp. 1177-1184. [Online]. Available: http://dl.acm.org/citation.cfm?id=2981562.2981710
-
(2007)
Proc. 20th Int. Conf. Neural Inf. Process. Syst. (NIPS)
, pp. 1177-1184
-
-
Rahimi, A.1
Recht, B.2
-
49
-
-
84898989411
-
Fastfood-Computing Hilbert space expansions in loglinear time
-
Jun
-
Q. Le, T. Sarlos, and A. Smola, "Fastfood-Computing Hilbert space expansions in loglinear time," in Proc. 30th Int. Conf. Mach. Learn., vol. 28. Jun. 2013, pp. 244-252. [Online]. Available: http://proceedings.mlr.press/v28/le13.html
-
(2013)
Proc. 30th Int. Conf. Mach. Learn
, vol.28
, pp. 244-252
-
-
Le, Q.1
Sarlos, T.2
Smola, A.3
-
50
-
-
84937855981
-
Scalable kernel methods via doubly stochastic gradients
-
B. Dai et al., "Scalable kernel methods via doubly stochastic gradients," in Proc. 27th Int. Conf. Neural Inf. Process. Syst. (NIPS), 2014, pp. 3041-3049. [Online]. Available: http://dl.acm.org/ citation.cfm?id=2969033.2969166
-
(2014)
Proc. 27th Int. Conf. Neural Inf. Process. Syst. (NIPS)
, pp. 3041-3049
-
-
Dai, B.1
-
51
-
-
0003991806
-
-
1st ed. New York, NY, USA: Wiley, Sep
-
V. N. Vapnik, Statistical Learning Theory, 1st ed. New York, NY, USA: Wiley, Sep. 1998. [Online]. Available: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471030031
-
(1998)
Statistical Learning Theory
-
-
Vapnik, V.N.1
-
52
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. Burges, "A tutorial on support vector machines for pattern recognition," Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121-167, 1998. [Online]. Available: http://dx.doi.org/10.1023/A:1009715923555
-
(1998)
Data Min. Knowl. Discov
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.1
-
53
-
-
84865131152
-
A generalized representer theorem
-
London, U.K
-
B. Schölkopf, R. Herbrich, and A. J. Smola, "A generalized representer theorem," in Proc. 14th Annu. Conf. Comput. Learn. Theory 5th Eur. Conf. Comput. Learn. Theory (COLT), London, U.K., 2001, pp. 416-426. [Online]. Available: http://dl.acm.org/citation.cfm?id= 648300.755324
-
(2001)
Proc. 14th Annu. Conf. Comput. Learn. Theory 5th Eur. Conf. Comput. Learn. Theory (COLT)
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
54
-
-
84877726257
-
The representer theorem for Hilbert spaces: A necessary and sufficient condition
-
F. Dinuzzo and B. Schölkopf, "The representer theorem for Hilbert spaces: A necessary and sufficient condition," in Proc. 25th Int. Conf. Neural Inf. Process. Syst. (NIPS), 2012, pp. 189-196. [Online]. Available: http://dl.acm.org/citation.cfm?id=2999134.2999156
-
(2012)
Proc. 25th Int. Conf. Neural Inf. Process. Syst. (NIPS)
, pp. 189-196
-
-
Dinuzzo, F.1
Schölkopf, B.2
-
55
-
-
85030110132
-
Fourier analysis on groups
-
R. E. Edwards, "Fourier analysis on groups," J. London Math. Soc., vol. 1-39, pp. 187-188, 1964, doi: 10.1112/jlms/s1-39.1.187
-
(1964)
J. London Math. Soc
, vol.1
, Issue.39
, pp. 187-188
-
-
Edwards, R.E.1
-
57
-
-
84982319043
-
On the error of random Fourier features
-
D. J. Sutherland and J. Schneider, "On the error of random Fourier features," in Proc. UAI, 2015, pp. 862-871. [Online]. Available: http://dl.acm.org/citation.cfm?id=3020847.3020936
-
(2015)
Proc. UAI
, pp. 862-871
-
-
Sutherland, D.J.1
Schneider, J.2
-
58
-
-
84877740547
-
Nyström method vs random Fourier features: A theoretical and empirical comparison
-
T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou, "Nyström method vs random Fourier features: A theoretical and empirical comparison," in Proc. 25th Int. Conf. Neural Inf. Process. Syst. (NIPS), 2012, pp. 476-484. [Online]. Available: http://dl.acm.org/citation.cfm?id=2999134.2999188
-
(2012)
Proc. 25th Int. Conf. Neural Inf. Process. Syst. (NIPS)
, pp. 476-484
-
-
Yang, T.1
Li, Y.-F.2
Mahdavi, M.3
Jin, R.4
Zhou, Z.-H.5
-
59
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
Nov
-
F. Pedregosa et al., "Scikit-learn: Machine learning in python," J. Mach. Learn. Res., vol. 12, pp. 2825-2830, Nov. 2011. [Online]. Available: http://dl.acm.org/citation.cfm?id=1953048.2078195
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
61
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
Mar
-
K. Crammer and Y. Singer, "On the algorithmic implementation of multiclass kernel-based vector machines," J. Mach. Learn. Res., vol. 2, pp. 265-292, Mar. 2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=944790.944813
-
(2002)
J. Mach. Learn. Res
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
62
-
-
0002322469
-
On a test of whether one of two random variables is stochastically larger than the other
-
H. B. Mann and D. R. Whitney, "On a test of whether one of two random variables is stochastically larger than the other," Ann. Math. Stat., vol. 18, no. 1, pp. 50-60, 1947
-
(1947)
Ann. Math. Stat
, vol.18
, Issue.1
, pp. 50-60
-
-
Mann, H.B.1
Whitney, D.R.2
-
63
-
-
77956815759
-
Wilcoxon-mann-whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules
-
M. P. Fay and M. A. Proschan, "Wilcoxon-mann-whitney or t-test? on assumptions for hypothesis tests and multiple interpretations of decision rules," Stat. Surv., vol. 4, pp. 1-39, 2010. [Online]. Available: http://projecteuclid.org/all/euclid.ssu
-
(2010)
Stat. Surv
, vol.4
, pp. 1-39
-
-
Fay, M.P.1
Proschan, M.A.2
|