-
1
-
-
77951969231
-
Training and testing low-degree polynomial data mappings via linear SVM
-
Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin. Training and testing low-degree polynomial data mappings via linear SVM. JMLR, 11: 1471-1490, 2010.
-
(2010)
JMLR
, vol.11
, pp. 1471-1490
-
-
Chang, Y.-W.1
Hsieh, C.-J.2
Chang, K.-W.3
Ringgaard, M.4
Lin, C.-J.5
-
2
-
-
80053459990
-
Adaptive kernel approximation for large-scale non-linear SVM prediction
-
M. Cossalter, R. Yan, and L. Zheng. Adaptive kernel approximation for large-scale non-linear svm prediction. In ICML, 2011.
-
(2011)
ICML
-
-
Cossalter, M.1
Yan, R.2
Zheng, L.3
-
3
-
-
84897480859
-
Learning optimally sparse support vector machines
-
A. Cotter, S. Shalev-Shwartz, and N. Srebro. Learning optimally sparse support vector machines. In ICML, 2013.
-
(2013)
ICML
-
-
Cotter, A.1
Shalev-Shwartz, S.2
Srebro, N.3
-
4
-
-
33751097630
-
Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition
-
P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices iii: Computing a compressed approximate matrix decomposition. SIAM J. Comput., 36(1): 184-206, 2006.
-
(2006)
SIAM J. Comput.
, vol.36
, Issue.1
, pp. 184-206
-
-
Drineas, P.1
Kannan, R.2
Mahoney, M.W.3
-
5
-
-
29244453931
-
On the nyström method for approximating a gram matrix for improved kernel-based learning
-
P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram matrix for improved kernel-based learning. JMLR, 6: 2153-2175, 2005.
-
(2005)
JMLR
, vol.6
, pp. 2153-2175
-
-
Drineas, P.1
Mahoney, M.W.2
-
6
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9: 1871-1874, 2008.
-
(2008)
JMLR
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
7
-
-
84877783090
-
A divide-and-conquer method for sparse inverse covariance estimation
-
C.-J. Hsieh, I. S. Dhillon, P. Ravikumar, and A. Banerjee. A divide-and-conquer method for sparse inverse covariance estimation. In NIPS, 2012.
-
(2012)
NIPS
-
-
Hsieh, C.-J.1
Dhillon, I.S.2
Ravikumar, P.3
Banerjee, A.4
-
8
-
-
84919800930
-
A divide-and-conquer solver for kernel support vector machines
-
C.-J. Hsieh, S. Si, and I. S. Dhillon. A divide-and-conquer solver for kernel support vector machines. In ICML, 2014.
-
(2014)
ICML
-
-
Hsieh, C.-J.1
Si, S.2
Dhillon, I.S.3
-
9
-
-
68949154453
-
Sparse kernel svms via cutting-plane training
-
T. Joachims and C.-N. Yu. Sparse kernel svms via cutting-plane training. Machine Learning, 76(2): 179-193, 2009.
-
(2009)
Machine Learning
, vol.76
, Issue.2
, pp. 179-193
-
-
Joachims, T.1
Yu, C.-N.2
-
10
-
-
84897556730
-
Local deep kernel learning for efficient non-linear SVM prediction
-
C. Jose, P. Goyal, P. Aggrwal, and M. Varma. Local deep kernel learning for efficient non-linear svm prediction. In ICML, 2013.
-
(2013)
ICML
-
-
Jose, C.1
Goyal, P.2
Aggrwal, P.3
Varma, M.4
-
12
-
-
84897567068
-
Random feature maps for dot product kernels
-
P. Kar and H. Karnick. Random feature maps for dot product kernels. In AISTATS, 2012.
-
(2012)
AISTATS
-
-
Kar, P.1
Karnick, H.2
-
13
-
-
33745789043
-
Building support vector machines with reduced classifier complexity
-
S. S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with reduced classifier complexity. JMLR, 7: 1493-1515, 2006.
-
(2006)
JMLR
, vol.7
, pp. 1493-1515
-
-
Keerthi, S.S.1
Chapelle, O.2
DeCoste, D.3
-
15
-
-
80053436893
-
Locally linear support vector machines
-
L. Ladicky and P. H. S. Torr. Locally linear support vector machines. In ICML, 2011.
-
(2011)
ICML
-
-
Ladicky, L.1
Torr, P.H.S.2
-
16
-
-
84897549944
-
Fastfood - Approximating kernel expansions in loglinear time
-
Q. V. Le, T. Sarlos, and A. J. Smola. Fastfood - approximating kernel expansions in loglinear time. In ICML, 2013.
-
(2013)
ICML
-
-
Le, Q.V.1
Sarlos, T.2
Smola, A.J.3
-
17
-
-
79955153536
-
RSVM: Reduced support vector machines
-
Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. In SDM, 2001.
-
(2001)
SDM
-
-
Lee, Y.-J.1
Mangasarian, O.L.2
-
18
-
-
84870201308
-
Efficient classification for additive kernel svms
-
S. Maji, A. C. Berg, and J. Malik. Efficient classification for additive kernel svms. IEEE PAMI, 35(1), 2013.
-
(2013)
IEEE PAMI
, vol.35
, Issue.1
-
-
Maji, S.1
Berg, A.C.2
Malik, J.3
-
19
-
-
84897048395
-
Fast SVM training using approximate extreme points
-
M. Nandan, P. R. Khargonekar, and S. S. Talathi. Fast svm training using approximate extreme points. JMLR, 15: 59-98, 2014.
-
(2014)
JMLR
, vol.15
, pp. 59-98
-
-
Nandan, M.1
Khargonekar, P.R.2
Talathi, S.S.3
-
20
-
-
0034593060
-
Towards scalable support vector machines using squashing
-
D. Pavlov, D. Chudova, and P. Smyth. Towards scalable support vector machines using squashing. In KDD, pages 295-299, 2000.
-
(2000)
KDD
, pp. 295-299
-
-
Pavlov, D.1
Chudova, D.2
Smyth, P.3
-
21
-
-
77953218689
-
Random features for large-scale kernel machines
-
A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, pages 1177-1184, 2007.
-
(2007)
NIPS
, pp. 1177-1184
-
-
Rahimi, A.1
Recht, B.2
-
22
-
-
0000263906
-
Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature spaces
-
Berlin Springer
-
B. Schölkopf, P. Knirsch, A. J. Smola, and C. J. C. Burges. Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature spaces. In Mustererkennung 1998-20. DAGM-Symposium, Informatik aktuell, pages 124-132, Berlin, 1998. Springer.
-
(1998)
Mustererkennung 1998-20. DAGM-Symposium, Informatik Aktuell
, pp. 124-132
-
-
Schölkopf, B.1
Knirsch, P.2
Smola, A.J.3
Burges, C.J.C.4
-
23
-
-
84919905043
-
Memory efficient kernel approximation
-
S. Si, C.-J. Hsieh, and I. S. Dhillon. Memory efficient kernel approximation. In ICML, 2014.
-
(2014)
ICML
-
-
Si, S.1
Hsieh, C.-J.2
Dhillon, I.S.3
-
24
-
-
21844440579
-
Core vector machines: Fast SVM training on very large data sets
-
I. Tsang, J. Kwok, and P. Cheung. Core vector machines: Fast SVM training on very large data sets. JMLR, 6: 363-392, 2005.
-
(2005)
JMLR
, vol.6
, pp. 363-392
-
-
Tsang, I.1
Kwok, J.2
Cheung, P.3
-
25
-
-
84901632905
-
Iteration complexity of feasible descent methods for convex optimization
-
P.-W. Wang and C.-J. Lin. Iteration complexity of feasible descent methods for convex optimization. JMLR, 15: 1523-1548, 2014.
-
(2014)
JMLR
, vol.15
, pp. 1523-1548
-
-
Wang, P.-W.1
Lin, C.-J.2
-
26
-
-
84885649693
-
Improving cur matrix decomposition and the nyström approximation via adaptive sampling
-
S. Wang and Z. Zhang. Improving cur matrix decomposition and the nyström approximation via adaptive sampling. JMLR, 14: 2729-2769, 2013.
-
(2013)
JMLR
, vol.14
, pp. 2729-2769
-
-
Wang, S.1
Zhang, Z.2
-
27
-
-
84899010839
-
Using the nyström method to speed up kernel machines
-
T. Leen, T. Dietterich, and V. Tresp, editors
-
C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In T. Leen, T. Dietterich, and V. Tresp, editors, NIPS, 2001.
-
(2001)
NIPS
-
-
Williams, C.K.I.1
Seeger, M.2
-
28
-
-
77957779140
-
Clustered nyström method for large scale manifold learning and dimension reduction
-
K. Zhang and J. T. Kwok. Clustered Nyström method for large scale manifold learning and dimension reduction. Trans. Neur. Netw., 21(10): 1576-1587, 2010.
-
(2010)
Trans. Neur. Netw.
, vol.21
, Issue.10
, pp. 1576-1587
-
-
Zhang, K.1
Kwok, J.T.2
-
29
-
-
56449087564
-
Improved nyström low rank approximation and error analysis
-
K. Zhang, I. W. Tsang, and J. T. Kwok. Improved Nyström low rank approximation and error analysis. In ICML, 2008.
-
(2008)
ICML
-
-
Zhang, K.1
Tsang, I.W.2
Kwok, J.T.3
|