메뉴 건너뛰기




Volumn 43, Issue 4, 2013, Pages 801-813

Concept drift-oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction

Author keywords

Adaptive and dynamic ensemble (ADE); Concept drift; Early warning; Financial risk prediction (FRP); Support vector machine (SVM)

Indexed keywords

CLASSIFIER DIVERSITIES; CONCEPT DRIFTS; DYNAMIC ENSEMBLE; DYNAMIC SUPPORTS; EARLY WARNING; FINANCIAL DISTRESS; FINANCIAL RISKS; PREDICTIVE ABILITIES;

EID: 84887111053     PISSN: 10834427     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCA.2012.2224338     Document Type: Article
Times cited : (50)

References (78)
  • 1
    • 78049527112 scopus 로고    scopus 로고
    • Dynamic financial distress prediction using instance selection for the disposal of concept drift
    • Mar. 2011
    • J. Sun and H. Li, Dynamic financial distress prediction using instance selection for the disposal of concept drift, Expert Syst. Appl., vol. 38, no. 3, pp. 2566-2576, Mar. 2011.
    • Expert Syst. Appl. , vol.38 , Issue.3 , pp. 2566-2576
    • Sun, J.1    Li, H.2
  • 2
    • 0002554419 scopus 로고
    • Financial ratios as predictors of failure
    • W. Beaver, Financial ratios as predictors of failure, J. Account. Res., vol. 4, pp. 71-111, 1966.
    • (1966) J. Account. Res. , vol.4 , pp. 71-111
    • Beaver, W.1
  • 3
    • 84980104458 scopus 로고    scopus 로고
    • Financial ratios discriminant analysis and the prediction of corporate bankruptcy
    • Sep. 1968
    • E. Altman, Financial ratios discriminant analysis and the prediction of corporate bankruptcy, J. Finance, vol. 23, no. 4, pp. 589-609, Sep. 1968.
    • J. Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.1
  • 4
    • 0033737589 scopus 로고    scopus 로고
    • Feature extraction for traffic incident detection using wavelet transform and linear discriminant analysis
    • Jul. 2000
    • A. Samant and H. Adeli, Feature extraction for traffic incident detection using wavelet transform and linear discriminant analysis, Computer-Aided Civil and Infrastructure Engineering, vol. 15, no. 4, pp. 241-250, Jul. 2000.
    • Computer-Aided Civil and Infrastructure Engineering , vol.15 , Issue.4 , pp. 241-250
    • Samant, A.1    Adeli, H.2
  • 5
    • 0000666375 scopus 로고
    • Financial ratios and probabilistic prediction of bankruptcy
    • Spring
    • J. Ohlson, Financial ratios and probabilistic prediction of bankruptcy, J. Account. Res., vol. 18, no. 1, pp. 109-131, Spring 1980.
    • (1980) J. Account. Res. , vol.18 , Issue.1 , pp. 109-131
    • Ohlson, J.1
  • 6
    • 79961053087 scopus 로고    scopus 로고
    • Improving classification accuracy and causal knowledge for better credit decisions
    • Aug. 2011
    • W. W. Wu, Improving classification accuracy and causal knowledge for better credit decisions, Int. J. Neural Syst., vol. 21, no. 4, pp. 297-309, Aug. 2011.
    • Int. J. Neural Syst. , vol.21 , Issue.4 , pp. 297-309
    • Wu, W.W.1
  • 7
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: A survey and new results
    • Jul. 2001
    • A. Atiya, Bankruptcy prediction for credit risk using neural networks: A survey and new results, IEEE Trans. Neural Netw., vol. 12, no. 4, pp. 929-935, Jul. 2001.
    • IEEE Trans. Neural Netw. , vol.12 , Issue.4 , pp. 929-935
    • Atiya, A.1
  • 8
    • 0027364993 scopus 로고    scopus 로고
    • Parallel back propagation learning algorithms on CRAY Y-MP8/864 supercomputer
    • Nov. 1993
    • S. Hung and H. Adeli, Parallel back propagation learning algorithms on CRAY Y-MP8/864 supercomputer, Neurocomputing, vol. 5, no. 6, pp. 287-302, Nov. 1993.
    • Neurocomputing , vol.5 , Issue.6 , pp. 287-302
    • Hung, S.1    Adeli, H.2
  • 9
    • 0035138778 scopus 로고    scopus 로고
    • Resource scheduling using neural dynamics model of Adeli and Park
    • Jan./Feb. 2001
    • A. B. Senouci and H. Adeli, Resource scheduling using neural dynamics model of Adeli and Park, J. Construct. Eng. Manag., vol. 127, no. 1, pp. 28-34, Jan./Feb. 2001.
    • J. Construct. Eng. Manag. , vol.127 , Issue.1 , pp. 28-34
    • Senouci, A.B.1    Adeli, H.2
  • 11
    • 77953740007 scopus 로고    scopus 로고
    • Recurrent neural networks for uncertain time-dependent structural behavior
    • Jul. 2010
    • W. Graf, S. Freitag, and M. Kaliske, Recurrent neural networks for uncertain time-dependent structural behavior, Comput.-Aided Civil Infrastruct. Eng., vol. 25, no. 5, pp. 322-333, Jul. 2010.
    • Comput.-Aided Civil Infrastruct. Eng. , vol.25 , Issue.5 , pp. 322-333
    • Graf, W.1    Freitag, S.2    Kaliske, M.3
  • 12
    • 77953765681 scopus 로고    scopus 로고
    • Artificial neural networks for forecasting of fuzzy time series
    • Jul. 2010
    • U. Reuter and B. Moeller, Artificial neural networks for forecasting of fuzzy time series, Comput.-Aided Civil Infrastruct. Eng., vol. 25, no. 5, pp. 363-374, Jul. 2010.
    • Comput.-Aided Civil Infrastruct. Eng. , vol.25 , Issue.5 , pp. 363-374
    • Reuter, U.1    Moeller, B.2
  • 13
    • 77958031946 scopus 로고    scopus 로고
    • Enhanced probabilistic neural network with local decision circles: A robust classifier
    • Aug. 2010
    • M. Ahmadlou and H. Adeli, Enhanced probabilistic neural network with local decision circles: A robust classifier, Integr. Comput.-Aided Eng., vol. 17, no. 3, pp. 197-210, Aug. 2010.
    • Integr. Comput.-Aided Eng. , vol.17 , Issue.3 , pp. 197-210
    • Ahmadlou, M.1    Adeli, H.2
  • 14
    • 80051533123 scopus 로고    scopus 로고
    • Recurrent neural networks for fuzzy data
    • Aug. 2011
    • S. Freitag, W. Graf, and M. Kaliske, Recurrent neural networks for fuzzy data, Integr. Comput.-Aided Eng., vol. 18, no. 3, pp. 265-280, Aug. 2011.
    • Integr. Comput.-Aided Eng. , vol.18 , Issue.3 , pp. 265-280
    • Freitag, S.1    Graf, W.2    Kaliske, M.3
  • 15
    • 79961085476 scopus 로고    scopus 로고
    • Rule extraction from minimal neural networks for credit card screening
    • Aug. 2011
    • R. Setiono, B. Baesens, and C. Mues, Rule extraction from minimal neural networks for credit card screening, Int. J. Neural Syst., vol. 21, no. 4, pp. 265-276, Aug. 2011.
    • Int. J. Neural Syst. , vol.21 , Issue.4 , pp. 265-276
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 16
    • 79961080200 scopus 로고    scopus 로고
    • Hybrid neural intelligent system to predict business failure in small-tomedium-size enterprises
    • Aug. 2011
    • M. Borrajo, B. Baruque, E. Corchado, J. Bajo, and M. Corchado, Hybrid neural intelligent system to predict business failure in small-tomedium-size enterprises, Int. J. Neural Syst., vol. 21, no. 4, pp. 277-296, Aug. 2011.
    • Int. J. Neural Syst. , vol.21 , Issue.4 , pp. 277-296
    • Borrajo, M.1    Baruque, B.2    Corchado, E.3    Bajo, J.4    Corchado, M.5
  • 18
    • 84944837333 scopus 로고    scopus 로고
    • Introducing recursive partitioning for financial classification: The case of financial distress
    • Mar. 1985
    • H. Frydman, E. I. Altman, and D. Kao, Introducing recursive partitioning for financial classification: The case of financial distress, J. Finance, vol. 40, no. 1, pp. 269-291, Mar. 1985.
    • J. Finance , vol.40 , Issue.1 , pp. 269-291
    • Frydman, H.1    Altman, E.I.2    Kao, D.3
  • 19
    • 79953312468 scopus 로고    scopus 로고
    • Automatic image search based on improved feature descriptors and decision tree
    • Apr. 2011
    • J. Hou, Z. Chen, X. Qin, and D. Zhang, Automatic image search based on improved feature descriptors and decision tree, Integr. Comput.-Aided Eng., vol. 18, no. 2, pp. 167-180, Apr. 2011.
    • Integr. Comput.-Aided Eng. , vol.18 , Issue.2 , pp. 167-180
    • Hou, J.1    Chen, Z.2    Qin, X.3    Zhang, D.4
  • 20
    • 33749673034 scopus 로고    scopus 로고
    • Deciding the financial health of dot-coms using rough sets
    • Oct. 2006
    • I. Bose, Deciding the financial health of dot-coms using rough sets, Inf. Manag., vol. 43, no. 7, pp. 835-846, Oct. 2006.
    • Inf. Manag. , vol.43 , Issue.7 , pp. 835-846
    • Bose, I.1
  • 21
    • 0348197047 scopus 로고    scopus 로고
    • Rough sets bankruptcy prediction models versus auditor signaling rates
    • Dec. 2003
    • T. McKee, Rough sets bankruptcy prediction models versus auditor signaling rates, J. Forecast., vol. 22, no. 8, pp. 569-586, Dec. 2003.
    • J. Forecast. , vol.22 , Issue.8 , pp. 569-586
    • McKee, T.1
  • 22
    • 77955735340 scopus 로고    scopus 로고
    • Exploring the deterioration factors of bridges: A rough set theory approach
    • Oct. 2010
    • R. Y. Huang, I. S. Mao, and H. K. Lee, Exploring the deterioration factors of bridges: A rough set theory approach, Comput.-Aided Civil Infrastruct. Eng., vol. 25, no. 7, pp. 517-529, Oct. 2010.
    • Comput.-Aided Civil Infrastruct. Eng. , vol.25 , Issue.7 , pp. 517-529
    • Huang, R.Y.1    Mao, I.S.2    Lee, H.K.3
  • 23
    • 0028546422 scopus 로고    scopus 로고
    • A parallel genetic/neural network learning algorithm for MIMD shared memory machines
    • Nov. 1994
    • S. L. Hung and H. Adeli, A parallel genetic/neural network learning algorithm for MIMD shared memory machines, IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 900-909, Nov. 1994.
    • IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 900-909
    • Hung, S.L.1    Adeli, H.2
  • 24
    • 78651435257 scopus 로고    scopus 로고
    • Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements
    • Feb. 2011
    • G. C. Marano, G. Quaranta, and G. Monti, Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements, Comput.-Aided Civil Infrastruct. Eng., vol. 26, no. 2, pp. 92-110, Feb. 2011.
    • Comput.-Aided Civil Infrastruct. Eng. , vol.26 , Issue.2 , pp. 92-110
    • Marano, G.C.1    Quaranta, G.2    Monti, G.3
  • 25
    • 78651520710 scopus 로고    scopus 로고
    • Developing crew allocation system for precast industry using genetic algorithms
    • Nov. 2010
    • A. Al-Bazi and N. Dawood, Developing crew allocation system for precast industry using genetic algorithms, Comput.-Aided Civil Infrastruct. Eng., vol. 25, no. 8, pp. 581-595, Nov. 2010.
    • Comput.-Aided Civil Infrastruct. Eng. , vol.25 , Issue.8 , pp. 581-595
    • Al-Bazi, A.1    Dawood, N.2
  • 26
    • 74049160021 scopus 로고    scopus 로고
    • A computerized feature selection using genetic algorithms to forecast freeway accident duration times
    • Feb. 2010
    • Y. Lee and C. H. Wei, A computerized feature selection using genetic algorithms to forecast freeway accident duration times, Comput.-Aided Civil Infrastruct. Eng., vol. 25, no. 2, pp. 132-148, Feb. 2010.
    • Comput.-Aided Civil Infrastruct. Eng. , vol.25 , Issue.2 , pp. 132-148
    • Lee, Y.1    Wei, C.H.2
  • 27
    • 80051534832 scopus 로고    scopus 로고
    • Genetic algorithm-based wrapper approach for grouping condition monitoring signals of nuclear power plant components
    • Aug. 2011
    • P. Baraldi, R. Canesi, E. Zio, R. Seraoui, and R. Chevalier, Genetic algorithm-based wrapper approach for grouping condition monitoring signals of nuclear power plant components, Integr. Comput.-Aided Eng., vol. 18, no. 3, pp. 221-234, Aug. 2011.
    • Integr. Comput.-Aided Eng. , vol.18 , Issue.3 , pp. 221-234
    • Baraldi, P.1    Canesi, R.2    Zio, E.3    Seraoui, R.4    Chevalier, R.5
  • 28
    • 0027676858 scopus 로고    scopus 로고
    • Integrated genetic algorithm for optimization of space structures
    • Oct. 1993
    • H. Adeli and N.-T. Cheng, Integrated genetic algorithm for optimization of space structures, J. Aerosp. Eng., vol. 6, no. 4, pp. 315-328, Oct. 1993.
    • J. Aerosp. Eng. , vol.6 , Issue.4 , pp. 315-328
    • Adeli, H.1    Cheng, N.-T.2
  • 29
    • 0028315780 scopus 로고    scopus 로고
    • Augmented Lagrangian genetic algorithm for structural optimization
    • Jan. 1994
    • H. Adeli and N.-T. Cheng, Augmented Lagrangian genetic algorithm for structural optimization, J. Aerosp. Eng., vol. 7, no. 1, pp. 104-118, Jan. 1994.
    • J. Aerosp. Eng. , vol.7 , Issue.1 , pp. 104-118
    • Adeli, H.1    Cheng, N.-T.2
  • 30
    • 0028465332 scopus 로고    scopus 로고
    • Concurrent genetic algorithms for optimization of large structures
    • Jul. 1994
    • H. Adeli and N.-T. Cheng, Concurrent genetic algorithms for optimization of large structures, J. Aerosp. Eng., vol. 7, no. 3, pp. 276-296, Jul. 1994.
    • J. Aerosp. Eng. , vol.7 , Issue.3 , pp. 276-296
    • Adeli, H.1    Cheng, N.-T.2
  • 31
    • 0029344063 scopus 로고    scopus 로고
    • Distributed genetic algorithms for structural optimization
    • Jul. 1995
    • H. Adeli and S. Kumar, Distributed genetic algorithms for structural optimization, J. Aerosp. Eng., vol. 8, no. 3, pp. 156-163, Jul. 1995.
    • J. Aerosp. Eng. , vol.8 , Issue.3 , pp. 156-163
    • Adeli, H.1    Kumar, S.2
  • 32
    • 0029411376 scopus 로고    scopus 로고
    • Concurrent structural optimization on a massively parallel supercomputer
    • Nov. 1995
    • H. Adeli and S. Kumar, Concurrent structural optimization on a massively parallel supercomputer, J. Struct. Eng., vol. 121, no. 11, pp. 1588-1597, Nov. 1995.
    • J. Struct. Eng. , vol.121 , Issue.11 , pp. 1588-1597
    • Adeli, H.1    Kumar, S.2
  • 33
    • 0033701953 scopus 로고    scopus 로고
    • Fuzzy genetic algorithm for optimization of steel structures
    • May 2000
    • K. Sarma and H. Adeli, Fuzzy genetic algorithm for optimization of steel structures, J. Struct. Eng., vol. 126, no. 5, pp. 596-604, May 2000.
    • J. Struct. Eng. , vol.126 , Issue.5 , pp. 596-604
    • Sarma, K.1    Adeli, H.2
  • 34
    • 0034324217 scopus 로고    scopus 로고
    • Fuzzy discrete multicriteria cost optimization of steel structures
    • Nov. 2000
    • K. Sarma and H. Adeli, Fuzzy discrete multicriteria cost optimization of steel structures, J. Struct. Eng., vol. 126, no. 11, pp. 1339-1347, Nov. 2000.
    • J. Struct. Eng. , vol.126 , Issue.11 , pp. 1339-1347
    • Sarma, K.1    Adeli, H.2
  • 35
    • 0035448742 scopus 로고    scopus 로고
    • Bi-level parallel genetic algorithms for optimization of large steel structures
    • Sep. 2001
    • K. Sarma and H. Adeli, Bi-level parallel genetic algorithms for optimization of large steel structures, Comput.-Aided Civil Infrastruct. Eng., vol. 16, no. 5, pp. 295-304, Sep. 2001.
    • Comput.-Aided Civil Infrastruct. Eng. , vol.16 , Issue.5 , pp. 295-304
    • Sarma, K.1    Adeli, H.2
  • 36
    • 0037203053 scopus 로고    scopus 로고
    • Life-cycle cost optimization of steel structures
    • Dec. 2002
    • K. Sarma and H. Adeli, Life-cycle cost optimization of steel structures, Int. J. Numer. Methods Eng., vol. 55, no. 12, pp. 1451-1462, Dec. 2002.
    • Int. J. Numer. Methods Eng. , vol.55 , Issue.12 , pp. 1451-1462
    • Sarma, K.1    Adeli, H.2
  • 37
    • 0012324030 scopus 로고    scopus 로고
    • Discrete cost optimization of composite floors using a floating-point genetic algorithm
    • H. Kim and H. Adeli, Discrete cost optimization of composite floors using a floating point genetic algorithm, Eng. Optim., vol. 33, no. 4, pp. 485-501, 2001. (Pubitemid 33816785)
    • (2001) Engineering Optimization , vol.33 , Issue.4 , pp. 485-501
    • Kim, H.1    Adeli, H.2
  • 38
    • 50449102806 scopus 로고    scopus 로고
    • Neuro-genetic algorithm for nonlinear active control of highrise buildings
    • Aug. 2008
    • X. Jiang and H. Adeli, Neuro-genetic algorithm for nonlinear active control of highrise buildings, Int. J. Numer. Methods Eng., vol. 75, no. 7, pp. 770-786, Aug. 2008.
    • Int. J. Numer. Methods Eng. , vol.75 , Issue.7 , pp. 770-786
    • Jiang, X.1    Adeli, H.2
  • 39
    • 59649108839 scopus 로고    scopus 로고
    • Hybridizing principles of the Electre method with case-based reasoning for data mining
    • Aug. 2009
    • H. Li and J. Sun, Hybridizing principles of the Electre method with case-based reasoning for data mining, Eur. J. Oper. Res., vol. 197, no. 1, pp. 214-224, Aug. 2009.
    • Eur. J. Oper. Res. , vol.197 , Issue.1 , pp. 214-224
    • Li, H.1    Sun, J.2
  • 40
    • 0037336997 scopus 로고    scopus 로고
    • CBR model for freeway work zone traffic management
    • Mar. 2003
    • A. Karim and H. Adeli, CBR model for freeway work zone traffic management, J. Transp. Eng., vol. 129, no. 2, pp. 134-145, Mar. 2003.
    • J. Transp. Eng. , vol.129 , Issue.2 , pp. 134-145
    • Karim, A.1    Adeli, H.2
  • 41
    • 13944267604 scopus 로고    scopus 로고
    • Case-based reasoning in steel bridge engineering
    • Feb. 2005
    • A. Waheed and H. Adeli, Case-based reasoning in steel bridge engineering, Knowl.-Based Syst., vol. 18, no. 1, pp. 37-46, Feb. 2005.
    • Knowl.-Based Syst. , vol.18 , Issue.1 , pp. 37-46
    • Waheed, A.1    Adeli, H.2
  • 42
    • 23144439363 scopus 로고    scopus 로고
    • Case-based reasoning for converting working stress design-based bridge ratings to load factor design-based ratings
    • Jul. 2005
    • G. F. Sirca, Jr. and H. Adeli, Case-based reasoning for converting working stress design-based bridge ratings to load factor design-based ratings, J. Bridge Eng., vol. 10, no. 4, pp. 450-459, Jul. 2005.
    • J. Bridge Eng. , vol.10 , Issue.4 , pp. 450-459
    • Sirca Jr., G.F.1    Adeli, H.2
  • 44
    • 73949094765 scopus 로고    scopus 로고
    • No-reference video quality measurement with support vector regression
    • Dec. 2009
    • H. C. Lian, No-reference video quality measurement with support vector regression, Int. J. Neural Syst., vol. 19, no. 6, pp. 457-464, Dec. 2009.
    • Int. J. Neural Syst. , vol.19 , Issue.6 , pp. 457-464
    • Lian, H.C.1
  • 45
    • 77951560201 scopus 로고    scopus 로고
    • Protein subcellular multi-localization prediction using a min-max modular support vector machine
    • Feb. 2010
    • Y. Yang and B. L. Lu, Protein subcellular multi-localization prediction using a min-max modular support vector machine, Int. J. Neural Syst., vol. 20, no. 1, pp. 13-28, Feb. 2010.
    • Int. J. Neural Syst. , vol.20 , Issue.1 , pp. 13-28
    • Yang, Y.1    Lu, B.L.2
  • 46
    • 30344453065 scopus 로고    scopus 로고
    • A new fuzzy support vector machine to evaluate credit risk
    • Dec. 2005
    • Y. Wang, S. Wang, and K. Lai, A new fuzzy support vector machine to evaluate credit risk, IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 820-831, Dec. 2005.
    • IEEE Trans. Fuzzy Syst. , vol.13 , Issue.6 , pp. 820-831
    • Wang, Y.1    Wang, S.2    Lai, K.3
  • 47
    • 59749093654 scopus 로고    scopus 로고
    • Evolving least squares support vector machines for stock market trend mining
    • Feb. 2009
    • L. Yu, H. Chen, S. Wang, and K. K. Lai, Evolving least squares support vector machines for stock market trend mining, IEEE Trans. Evol. Comput., vol. 13, no. 1, pp. 87-102, Feb. 2009.
    • IEEE Trans. Evol. Comput. , vol.13 , Issue.1 , pp. 87-102
    • Yu, L.1    Chen, H.2    Wang, S.3    Lai, K.K.4
  • 48
    • 82655173325 scopus 로고    scopus 로고
    • Ranking-based kernels in applied biomedical diagnostics using support vectormachine
    • Dec. 2011
    • V. Jumutc, P. Zayakin, and A. Borisov, Ranking-based kernels in applied biomedical diagnostics using support vectormachine, Int. J. Neural Syst., vol. 21, no. 6, pp. 459-473, Dec. 2011.
    • Int. J. Neural Syst. , vol.21 , Issue.6 , pp. 459-473
    • Jumutc, V.1    Zayakin, P.2    Borisov, A.3
  • 50
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • Jan. 2005
    • K. Shin, T. Lee, and H. Kim, An application of support vector machines in bankruptcy prediction model, Expert Syst. Appl., vol. 28, no. 1, pp. 127-135, Jan. 2005.
    • Expert Syst. Appl. , vol.28 , Issue.1 , pp. 127-135
    • Shin, K.1    Lee, T.2    Kim, H.3
  • 51
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • May 2005
    • J. Min and Y. Y. Lee, Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters, Expert Syst. Appl., vol. 28, no. 4, pp. 128-134, May 2005.
    • Expert Syst. Appl. , vol.28 , Issue.4 , pp. 128-134
    • Min, J.1    Lee, Y.Y.2
  • 53
    • 38649138750 scopus 로고    scopus 로고
    • Forecasting financial condition of Chinese listed companies based on support vector machine
    • May 2008
    • Y. Ding, X. Song, and Y. Zeng, Forecasting financial condition of Chinese listed companies based on support vector machine, Expert Syst. Appl., vol. 34, no. 4, pp. 3081-3089, May 2008.
    • Expert Syst. Appl. , vol.34 , Issue.4 , pp. 3081-3089
    • Ding, Y.1    Song, X.2    Zeng, Y.3
  • 54
    • 56349142889 scopus 로고    scopus 로고
    • Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods
    • Mar. 2009
    • M. Boyacioglu, Y. Kara, and O. Baykan, Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods, Expert Syst. Appl., vol. 36, no. 2, pp. 3355-3366, Mar. 2009.
    • Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3355-3366
    • Boyacioglu, M.1    Kara, Y.2    Baykan, O.3
  • 55
    • 84870777060 scopus 로고    scopus 로고
    • Focus of the issue: Credit scoring and bankruptcy prediction-Introduction
    • Apr. 2011
    • H. Li,M. Y. Kiang, and D. Andina, Focus of the issue: Credit scoring and bankruptcy prediction-Introduction, Int. J. Neural Syst., vol. 21, no. 4, pp. v-vi, Apr. 2011.
    • Int. J. Neural Syst. , vol.21 , Issue.4 , pp. 5-6
    • Li, H.1    Kiang, M.Y.2    Andina, D.3
  • 56
    • 45049088570 scopus 로고    scopus 로고
    • Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers
    • Oct. 2008
    • J. Sun and H. Li, Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers, Expert Syst. Appl., vol. 35, no. 3, pp. 818-827, Oct. 2008.
    • Expert Syst. Appl. , vol.35 , Issue.3 , pp. 818-827
    • Sun, J.1    Li, H.2
  • 57
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • May 2008
    • C. Tsai and J. Wu, Using neural network ensembles for bankruptcy prediction and credit scoring, Expert Syst. Appl., vol. 34, no. 4, pp. 2639-2649, May 2008.
    • Expert Syst. Appl. , vol.34 , Issue.4 , pp. 2639-2649
    • Tsai, C.1    Wu, J.2
  • 58
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • Mar. 2008
    • L. Nanni and A. Lumini, An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring, Expert Syst. Appl., vol. 36, no. 2, pp. 3028-3033, Mar. 2008.
    • Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 59
    • 58349100252 scopus 로고    scopus 로고
    • A selective ensemble based on expected probabilities for bankruptcy prediction
    • Apr. 2009
    • C. Hung and J. Chen, A selective ensemble based on expected probabilities for bankruptcy prediction, Expert Syst. Appl., vol. 36, no. 3, pp. 5297-5303, Apr. 2009.
    • Expert Syst. Appl. , vol.36 , Issue.3 , pp. 5297-5303
    • Hung, C.1    Chen, J.2
  • 60
    • 60249097469 scopus 로고    scopus 로고
    • Financial distress prediction based on serial combination of multiple classifiers
    • May 2009
    • J. J. Sun and H. Li, Financial distress prediction based on serial combination of multiple classifiers, Expert Syst. Appl., vol. 36, no. 4, pp. 8659-8666, May 2009.
    • Expert Syst. Appl. , vol.36 , Issue.4 , pp. 8659-8666
    • Sun, J.J.1    Li, H.2
  • 61
    • 41149115573 scopus 로고    scopus 로고
    • Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
    • Apr. 2008
    • E. Alfaro, N. García, M. Gámez, and D. Elizondo, Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks, Decision Support Syst., vol. 45, no. 1, pp. 110-122, Apr. 2008.
    • Decision Support Syst. , vol.45 , Issue.1 , pp. 110-122
    • Alfaro, E.1    García, N.2    Gámez, M.3    Elizondo, D.4
  • 62
    • 71349086364 scopus 로고    scopus 로고
    • Ensemble with neural networks for bankruptcy prediction
    • Apr. 2010
    • M. Kim and D. Kang, Ensemble with neural networks for bankruptcy prediction, Expert Syst. Appl., vol. 37, no. 4, pp. 3373-3379, Apr. 2010.
    • Expert Syst. Appl. , vol.37 , Issue.4 , pp. 3373-3379
    • Kim, M.1    Kang, D.2
  • 63
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Apr. 1996
    • G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden contexts, Mach. Learn., vol. 23, no. 1, pp. 69-101, Apr. 1996.
    • Mach. Learn. , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 64
    • 0141804082 scopus 로고    scopus 로고
    • Detecting concept drift with support vector machines
    • ICML
    • R. Klinkenberg and T. Joachims, Detecting concept drift with support vector machines, in Proc. 17th ICML, 2000, pp. 487-494.
    • (2000) Proc. 17th , pp. 487-494
    • Klinkenberg, R.1    Joachims, T.2
  • 65
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs example weighting
    • Aug. 2004
    • R. Klinkenberg, Learning drifting concepts: Example selection vs. example weighting, Intell. Data Anal., vol. 8, no. 3, pp. 281-300, Aug. 2004.
    • Intell. Data Anal. , vol.8 , Issue.3 , pp. 281-300
    • Klinkenberg, R.1
  • 66
    • 71149091248 scopus 로고    scopus 로고
    • Efficient learning algorithms for changing environments
    • Montreal, QC, Canada
    • E. Hazan and C. Seshadhri, Efficient learning algorithms for changing environments, in Proc. 26th ICML, Montreal, QC, Canada, 2009, pp. 393-400.
    • (2009) Proc. 26th ICML , pp. 393-400
    • Hazan, E.1    Seshadhri, C.2
  • 68
    • 70350220741 scopus 로고    scopus 로고
    • A model updating strategy for predicting time series with seasonal patterns
    • J. A. Guajardo, R. Weber, and J. Miranda, A model updating strategy for predicting time series with seasonal patterns, Appl. Soft Comput., vol. 10, no. 1, pp. 276-283, 2010.
    • (2010) Appl. Soft Comput. , vol.10 , Issue.1 , pp. 276-283
    • Guajardo, J.A.1    Weber, R.2    Miranda, J.3
  • 69
    • 84887045419 scopus 로고    scopus 로고
    • Adapting to non-stationarity with growing expert ensembles
    • arXiv: 1103.0949
    • C. Shalizi, A. Jacobs, K. Klinkner, and A. Clauset, Adapting to non-stationarity with growing expert ensembles, Mach. Learn., 2011, arXiv:1103.0949.
    • (2011) Mach. Learn.
    • Shalizi, C.1    Jacobs, A.2    Klinkner, K.3    Clauset, A.4
  • 70
    • 78751630981 scopus 로고    scopus 로고
    • Handling drifts and shifts in on-line data streams with evolving fuzzy systems
    • Mar. 2011
    • E. Lughofer and P. Angelov, Handling drifts and shifts in on-line data streams with evolving fuzzy systems, Appl. Soft Comput., vol. 11, no. 2, pp. 2057-2068, Mar. 2011.
    • Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2057-2068
    • Lughofer, E.1    Angelov, P.2
  • 71
    • 84876970947 scopus 로고    scopus 로고
    • Recentness biased learning for time series forecasting
    • doi:10.1016/j.ins.2010.09.004
    • S. Gu, Y. Tan, and X. He, Recentness biased learning for time series forecasting, Inf. Sci., 2010, doi:10.1016/j.ins.2010.09.004.
    • (2010) Inf. Sci.
    • Gu, S.1    Tan, Y.2    He, X.3
  • 72
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Aug. 1996
    • L. Breiman, Bagging predictors, Mach. Learn., vol. 24, no. 2, pp. 123-140, Aug. 1996.
    • Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 73
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • San Francisco, CA
    • Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm, in Proc. 13th Int. Conf. Mach. Learn., San Francisco, CA, 1996, pp. 148-156.
    • (1996) Proc. 13th Int. Conf. Mach. Learn. , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 75
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training SVM
    • Dec. 2005
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin, Working set selection using second order information for training SVM, J. Mach. Learn. Res., vol. 6, pp. 1889-1918, Dec. 2005.
    • J. Mach. Learn. Res. , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 76
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision applications
    • Oct. 2005
    • D. West, S. Dellana, and J. Qian, Neural network ensemble strategies for financial decision applications, Comput. Oper. Res., vol. 32, no. 10, pp. 2543-2559, Oct. 2005.
    • Comput. Oper. Res. , vol.32 , Issue.10 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 77
    • 70349280929 scopus 로고    scopus 로고
    • An experimental comparison of performance measures for classification
    • Jan. 2009
    • C. Ferri, J. Hernández-Orallo, and R. Modroiu, An experimental comparison of performance measures for classification, Pattern Recognit. Lett., vol. 30, no. 1, pp. 27-38, Jan. 2009.
    • Pattern Recognit. Lett. , vol.30 , Issue.1 , pp. 27-38
    • Ferri, C.1    Hernández-Orallo, J.2    Modroiu, R.3
  • 78
    • 84899004772 scopus 로고    scopus 로고
    • Using data mining for bank direct marketing: An application of the CRISP-DM methodology
    • P. Novais, J. Machado C. Analide, and A. Abelha, Eds., Guimarães, Portugal, Oct. 2011 B.
    • S. Moro, R. Laureano, and P. Cortez, Using data mining for bank direct marketing: An application of the CRISP-DM methodology, in Proc. Eur. Simul. Model. Conf., P. Novais, J. Machado, C. Analide, and A. Abelha, Eds., Guimarães, Portugal, Oct. 2011, pp. 117-121. B.
    • Proc. Eur. Simul. Model. Conf. , pp. 117-121
    • Moro, S.1    Laureano, R.2    Cortez, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.