-
1
-
-
0033721433
-
Massive data discrimination via linear support vector machines
-
Bradley P.S., Mangasarian O.L. Massive data discrimination via linear support vector machines. Optim. Methods Software 2000, 13(1):1-10.
-
(2000)
Optim. Methods Software
, vol.13
, Issue.1
, pp. 1-10
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
2
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discovery 1998, 2(2):121-167.
-
(1998)
Data Min. Knowl. Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.1
-
6
-
-
0035789613
-
Proximal support vector machine classifiers
-
ACM, New York, NY, USA
-
Fung G., Mangasarian O.L. Proximal support vector machine classifiers. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '01 2001, 77-86. ACM, New York, NY, USA.
-
(2001)
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '01
, pp. 77-86
-
-
Fung, G.1
Mangasarian, O.L.2
-
7
-
-
33745784639
-
Maximum-gain working set selection for SVMs
-
December
-
Glasmachers T., Igel C. Maximum-gain working set selection for SVMs. J. Mach. Learn. Res. 2006, 7(December):1437-1466.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1437-1466
-
-
Glasmachers, T.1
Igel, C.2
-
8
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
MIT Press, Cambridge, MA, USA, B. Schölkopf, C. Burges, A. Smola (Eds.)
-
Joachims T. Making large-scale support vector machine learning practical. Advances in Kernel Methods-Support Vector Learning 1999, 168-184. MIT Press, Cambridge, MA, USA. B. Schölkopf, C. Burges, A. Smola (Eds.).
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 168-184
-
-
Joachims, T.1
-
9
-
-
0037313407
-
SMO algorithm for least-squares SVM formulations
-
Keerthi S.S., Shevade S.K. SMO algorithm for least-squares SVM formulations. Neural Comput. 2003, 15(2):487-507.
-
(2003)
Neural Comput.
, vol.15
, Issue.2
, pp. 487-507
-
-
Keerthi, S.S.1
Shevade, S.K.2
-
10
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
Keerthi S.S., Shevade S.K., Bhattacharyya C., Murthy K.R.K. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Comput. 2001, 13(3):637-649.
-
(2001)
Neural Comput.
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
11
-
-
0032594961
-
Successive overrelaxation for support vector machines
-
Mangasarian O.L., Musicant D.R. Successive overrelaxation for support vector machines. IEEE Trans. Neural Networks 1998, 10(5):1032-1037.
-
(1998)
IEEE Trans. Neural Networks
, vol.10
, Issue.5
, pp. 1032-1037
-
-
Mangasarian, O.L.1
Musicant, D.R.2
-
12
-
-
0031334889
-
An improved training algorithm for support vector machines
-
Osuna E., Freund R., Girosi F. An improved training algorithm for support vector machines. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing (NNSP), Amelia Island, FL, USA 1997, vol. VII:276-285.
-
(1997)
Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing (NNSP), Amelia Island, FL, USA
, vol.7
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
13
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press, Cambridge, MA, USA, B. Schölkopf, C. Burges, A. Smola (Eds.)
-
Platt J.C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods-Support Vector Learning 1999, 185-208. MIT Press, Cambridge, MA, USA. B. Schölkopf, C. Burges, A. Smola (Eds.).
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
14
-
-
84898983292
-
Using analytic QP and sparseness to speed training of support vector machines
-
MIT Press, Cambridge, MA, USA
-
Platt J.C. Using analytic QP and sparseness to speed training of support vector machines. Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems 1999, vol. II:557-563. MIT Press, Cambridge, MA, USA.
-
(1999)
Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems
, vol.2
, pp. 557-563
-
-
Platt, J.C.1
-
15
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Shevade S.K., Keerthi S.S., Bhattacharyya C., Murthy K.R.K. Improvements to the SMO algorithm for SVM regression. IEEE Trans. Neural Networks 2000, 11(5):1188-1194.
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, Issue.5
, pp. 1188-1194
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
16
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
17
-
-
34547315922
-
Iterative single data algorithm for training kernel machines from huge data sets: theory and performance
-
Springer Verlag
-
Vogt M., Kecman V., Huang T.-M. Iterative single data algorithm for training kernel machines from huge data sets: theory and performance. Support Vector Machines: Theory and Applications 2005, vol. 177:255-274. Springer Verlag.
-
(2005)
Support Vector Machines: Theory and Applications
, vol.177
, pp. 255-274
-
-
Vogt, M.1
Kecman, V.2
Huang, T.-M.3
-
19
-
-
28244453270
-
SMO-based pruning methods for sparse least squares support vector machines
-
Zeng X., Chen X.-W. SMO-based pruning methods for sparse least squares support vector machines. IEEE Trans. Neural Networks 2005, 16(6):1541-1546.
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, Issue.6
, pp. 1541-1546
-
-
Zeng, X.1
Chen, X.-W.2
|