메뉴 건너뛰기




Volumn 77, Issue 1, 2012, Pages 253-260

Using Sequential Unconstrained Minimization Techniques to simplify SVM solvers

Author keywords

SMO; Support vector machines; SVM

Indexed keywords

BENCHMARK DATASETS; BOX CONSTRAINTS; L-1 NORM SVM; LEAST SQUARE; SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUES; SMO; SUPPORT VECTOR; SVM; SVM SOLVERS; UNCONSTRAINED OPTIMIZATION PROBLEMS;

EID: 80955130702     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.07.010     Document Type: Article
Times cited : (19)

References (19)
  • 1
    • 0033721433 scopus 로고    scopus 로고
    • Massive data discrimination via linear support vector machines
    • Bradley P.S., Mangasarian O.L. Massive data discrimination via linear support vector machines. Optim. Methods Software 2000, 13(1):1-10.
    • (2000) Optim. Methods Software , vol.13 , Issue.1 , pp. 1-10
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discovery 1998, 2(2):121-167.
    • (1998) Data Min. Knowl. Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 7
    • 33745784639 scopus 로고    scopus 로고
    • Maximum-gain working set selection for SVMs
    • December
    • Glasmachers T., Igel C. Maximum-gain working set selection for SVMs. J. Mach. Learn. Res. 2006, 7(December):1437-1466.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1437-1466
    • Glasmachers, T.1    Igel, C.2
  • 8
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • MIT Press, Cambridge, MA, USA, B. Schölkopf, C. Burges, A. Smola (Eds.)
    • Joachims T. Making large-scale support vector machine learning practical. Advances in Kernel Methods-Support Vector Learning 1999, 168-184. MIT Press, Cambridge, MA, USA. B. Schölkopf, C. Burges, A. Smola (Eds.).
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 168-184
    • Joachims, T.1
  • 9
    • 0037313407 scopus 로고    scopus 로고
    • SMO algorithm for least-squares SVM formulations
    • Keerthi S.S., Shevade S.K. SMO algorithm for least-squares SVM formulations. Neural Comput. 2003, 15(2):487-507.
    • (2003) Neural Comput. , vol.15 , Issue.2 , pp. 487-507
    • Keerthi, S.S.1    Shevade, S.K.2
  • 11
    • 0032594961 scopus 로고    scopus 로고
    • Successive overrelaxation for support vector machines
    • Mangasarian O.L., Musicant D.R. Successive overrelaxation for support vector machines. IEEE Trans. Neural Networks 1998, 10(5):1032-1037.
    • (1998) IEEE Trans. Neural Networks , vol.10 , Issue.5 , pp. 1032-1037
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 13
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA, USA, B. Schölkopf, C. Burges, A. Smola (Eds.)
    • Platt J.C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods-Support Vector Learning 1999, 185-208. MIT Press, Cambridge, MA, USA. B. Schölkopf, C. Burges, A. Smola (Eds.).
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 16
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 17
    • 34547315922 scopus 로고    scopus 로고
    • Iterative single data algorithm for training kernel machines from huge data sets: theory and performance
    • Springer Verlag
    • Vogt M., Kecman V., Huang T.-M. Iterative single data algorithm for training kernel machines from huge data sets: theory and performance. Support Vector Machines: Theory and Applications 2005, vol. 177:255-274. Springer Verlag.
    • (2005) Support Vector Machines: Theory and Applications , vol.177 , pp. 255-274
    • Vogt, M.1    Kecman, V.2    Huang, T.-M.3
  • 19
    • 28244453270 scopus 로고    scopus 로고
    • SMO-based pruning methods for sparse least squares support vector machines
    • Zeng X., Chen X.-W. SMO-based pruning methods for sparse least squares support vector machines. IEEE Trans. Neural Networks 2005, 16(6):1541-1546.
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.6 , pp. 1541-1546
    • Zeng, X.1    Chen, X.-W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.